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Introduction

Since the early 20th century it has been understood that nature at the subatomic scale
requires quantum mechanics, but the great breakthrough was the description of nature
in terms of fields, led by Maxwell’s ingenuous achievements of unifying Electricity and
Magnetism with light. Einstein followed, placing Space and Time at the same footing
relating them with matter through geometry. Herman Weyl tried to geometrize Maxwell’s
theory in the same spirit of Einstein and opened the doors to gauge theories, which C. N.
Yang and R. Mills used to generalized the concept to non-abelian gauge groups to account
for the other two forces of nature, the Weak and the Strong. It was then shown that such
gauge theories should be regarded as specific geometric constructs, namely fiber bundle
manifolds. The topic of research is to understand the mathematical formalism and how it
relates the known forces of nature. Chapter one is intended as a historical introduction,
setting the stage for future development, almost no equations and can be read by any
person interested in science. Chapter two and three are intended for a graduating student
in Physics, much of the mathematical core is just sketched with no mathematical rigor, just
with physical intuitions. Chapter four assumes knowledge of the definitions, propositions,
theorems and corollaries given in the appendices with the corresponding title, the author
has tried to connect ideas from mathematics to physics through the fiber bundle formalism.
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1 The first field theory

It is said that Coulomb, Gauss, Ampere and Faraday discovered 4 laws experimentally and
James Clerk Maxwell wrote them into equations by adding the displacement current. Not
entirely wrong but obscures the subtle interplay between geometrical and physical intuitions
that were essential in the creation of field theory.

The first big step in the study of electricity was the invention by Volta (1745-1827) of
the Voltaic Pile around 1800, a device of zinc and copper plates dipped in seawater brine.
Then in Oersted (1777-1851) discovered in 1820 that an electric current would always cause
magnetic needles in its neighborhood to move. This experiment lead to devices as the
solenoid and to exact mathematical laws of Ampere (1775-1836) a learned mathematician
that in 1827 worked out the exact magnetic forces in the neighborhood of a current as
′′action at a distance′′. Oersted’s discovery also excited Faraday (1791-1867) that wrote to
Ampere: “. . . I am unfortunate in a want to mathematical knowledge and power of entering
with facility any abstract reasoning. I am obliged to feel my way by facts placed closely
together. . . ” (Sept. 3 1822). Without mathematical training and rejecting Ampere’s ac-
tion at a distance, Faraday used geometric intuition to “feel his way” in understanding his
experiments. In 1831 he discovered electric induction and started 23 years long research,
recording every experimental fact in his monumental collection <Experimental Research>
without using a single formula. Faraday has discovered how to convert kinetic energy to
electric energy and thereby how to make electric generators, but more important perhaps
was his vague geometric conception of the “electro-tonic state” expressed in <ER> vol 3
p.443 he wrote: “. . . a state of tension or a state of vibration or perhaps some other state
analogous to the electric current, to which the magnetic forces are so intimately related.”
He believed that all metals take on the peculiar state of tension, appearing to be instantly
assumed and he was perplexed by two facts: the magnet must be moved to produce induc-
tion and that induction often produce effects perpendicular to the cause. He was “feeling
his way” in trying to understand electromagnetism, but today we have to “feel our way”

in trying to understand his geometric intuition:

• Magnetic lines of forces (experimentally seen with sprinkling iron filings now called
H, the magnetic field)

• Electrotonic state.

When in 1854 at 63 years of age, Faraday ceased his compilation of <ER> and the
electro-tonic state remained an elusive geometric intuition, but along came J. C. Maxwell,
a 23 years old graduated from Cambridge University that said: “. . . I wish to attack Elec-
tricity” . In two years Maxwell published the first of his three great paper which founded
the Electromagnetic Theory as a Field Theory.

1.1 James Clerk Maxwell

Maxwell had learned Stokes’s theorem and from reading Thomson’s mathematical papers
the usefulness of H = curl (A) [1]. He figured out that Faraday’s ′′electro-tonic intensity′′
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is A, the vector potential. What Faraday had described in so many words was the equation
E = −deriv (A) , that by taking the curl on both side yields the now known Faraday’s
law in differential form: curl (E) = −deriv (H). . To avoid controversy with Thomson,
Maxwell carefully wrote: “. . . With respect to the history of the present theory, I may state
that the recognition of certain mathematical functions as expressing the “electrotonic state”
of Faraday, and the use of them in determining electrodynamic potentials and electromotive
forces is, as far as I am aware, original; but the distinct conception of the possibility of
the mathematical expression arose in my mind from the perusal of Prof. W. Thomson’s
papers. . . ”

In 1861 and 1862 Maxwell [2] added the displacement current and corrected his equa-
tions accounting for the effect due to the elasticity of the medium. He arrived at this
correction according to his paper, through the study of a network of vortices, he had a
geometrical model, that let him state: “We can scarcely avoid inference that light consists
in transverse undulation of the same medium which is the cause of electric and magnetic
phenomena.” . In other words, light is equal to electromagnetic waves. This is a momentous
discovery of great importance for humankind. Any person, religious or not, must stop and
wonder, because one of the greatest secrete of nature was revealed. He wrote a very clear
exposition of the basic philosophy of field theory: “In speaking of the Energy of the field,
however, I wish to be understood literally. All energy is the same as mechanical energy,
whether it exists in the form of motion or in that of elasticity, or in any other form. The
energy in electromagnetic phenomena is mechanical energy. The only question is, where
does it reside? On the old theories it resides in the electrified bodies, conducting circuits,
and magnets, in the form of an unknown quality called potential energy, or the power of
producing certain effects at a distance. . . on our theory it resides in the electromagnetic
field, in the space surrounding the electrified and magnetic bodies, as well as in those bodies
themselves, and is in two different forms, which may be described without hypothesis as
magnetic polarization and electric polarization, or, according to a very probable hypothesis
as the motion and the strain of one and the same medium.” Maxwell still believed there
had to be an “aethereal medium” .

The first important development in 20th century physicists’ understanding of inter-
actions was Einstein’s 1905 special theory of relativity, according to which there is no
“aethereal medium” , the electromagnetic field itself is the medium.

The vector potential A was first used by Lord Kelvin in 1851, who recognized its
non-uniqueness, he recognized that by adding a gradient the laws of physics are invariant.

Throughout his life Maxwell always wrote his equations with the vector potential play-
ing a key role, but after his death Heaviside and Hertz gleefully eliminated A :

Heaviside [3] said: “The duplex method (referring to his recasting of the Faraday’s
law as curl E in parallel to the curl B for the Ampere’s law as Maxwell has it) eminently
suited for displaying Maxwell’s theory and brings to light many useful relations which were
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formerly hidden from view by the intervention of the vector potential and its parasites(scalar
potential). . . in the present method we are from first to last, in contact with those quantities
which are believed to have physical significance, instead of with mathematical functions of
an essentially indeterminate nature, and with laws connecting them in the simplest form” .

It was the advent of Quantum Mechanics that finalized the physical meaning of the
vector potential and with the Aharonov-Bohm effect [4], there was no doubt, A cannot be
eliminated and the flexibility in its definition is precisely the symmetry that determines the
structure of the EM field. Thomson and Maxwell had both discussed what we now call
the gauge freedom in H = O × A , but with development of QM, this freedom acquired
additional meaning in physics.

1.2 Herman Weyl

Maxwell’s equations have, beyond the Lorentz symmetry found by Einstein and Minkowski,
another symmetry, namely Gauge Symmetry, discovered mainly by H. Weyl in the years
1919-1929. Weyl was one of the greatest mathematician of the 20th century, following
his two predecessors Hilbert and Poincare, but he also focused on physics mostly in a
philosophical way and the principal of gauge symmetry was a result of Weyl’s excursion
into the philosophy of Physics. Weyl’s motivation was the geometrization of EM field, a
challenge that Einstein put forward after he had geometrized gravity, in terms of curvature
of spacetime, asking that EM field should also be geometrically understood.

Maxwell equations and QM were invariant under joint transformation ψ → ψ
′

= eiαψ

and Aµ → A
′
µ = Aµ + 1

e
∂α
∂xµ

, the latter was known already, that is, from Aµ to A′µ by
adding a gradient such that the curl of Aµ remains invariant. But Weyl’s intuition was
transforming also ψ into ψ′ by a phase factor, leading to QM invariant, calling them gauge
transformation of first kind and gauge transformation of second kind respectively. He was
until his death (1955) devoted to the idea of gauge invariance. He explicitly stated that
the strongest argument for gauge theory was its relationship to charge conservation. Sadly
his continued interest in the idea of gauge fields was not known among the physicists, he
died without knowing that Yang and Mills had generalized his idea to non-Abelian Lie
groups. Yang writes: “. . . had Weyl somehow come across our paper, I imagine he would
have been pleased and excited, for we had put together two things that were very close to
his heart: gauge invariance and non-Abelian Lie groups.” . He was closed to non-Abelian
group, because his paper of 1925 when he built upon Cartan’s theory and developed the
representation theory of Lie groups. Every Lie group has some representation in different
dimensions, how to characterize them was one of the greatest contribution of Herman Weyl.

In 1919 Weyl [6] wrote: ”. . . the fundamental conception on which the development of
Riemann’s geometry must be based if it is to be in agreement with nature, is that of the
infinitesimal parallel displacement vector. . . if in infinitesimal displacement of a vector, its
direction keep changing then: Warum nicht auch seine Lange? (Why not also its length?)”.
Weyl introduced a Streckenfacktor or Proportionalitatsfacktor: exp

(
−
∫
eA (ν) dxˆν

)
/γ,

with γ being real. He identified the infinitesimal length changing factor, with the vector
potential A at that point.
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In 1925-1926 Fock and London independently pointed out that in Quantum Mechanics
(p− eA)→ −ih

(
∂ν − ie

hAν
)
, which implies that Weyl’s γ should be imaginary and in 1929

Weyl took this idea and published an important paper accepting that:

• A precise definition in QM of gauge transformation both for EM field and for wave
function of charged particles, a coupled transformation on one hand gives the EM
transformation and on the other hand it changes the phase of charged particles in
QM.

• Maxwell’s equations are invariant if one considers this combined gauge transformation.

Weyl’s gauge invariance produced no new experimental results for more than 20 years,
it was regarded as an elegant formalism but not essential, as C. N. Yang says, “it seemed
to be used only for a young theorist to spring a “smart” question at the end of a seminar:
is your theory gauge invariant?” . It was a mistake checking tool, because by starting with
a gauge invariant theory, after all the calculations, the result must still be gauge invariant
otherwise an error was made in the calculations.

1.3 Yang and Mills, the gauge symmetry

After World War 2 many new strange particles were found and the question of how they
interact with each other emerged. This question let to a generalization of Weyl’s gauge in-
variance to a possible new theory of interactions beyond EM. Thus, was born non-Abelian
gauge theory. In 1954 C.N. Yang states [5]: “. . . the electric charge serves as a source of
electromagnetic field; an important concept in this case is gauge invariance which is closely
connected with (1) the equation of motion of the electromagnetic field, (2) the existence of a
current density, and (3) the possible interactions between a charged field and the electromag-
netic field. We have tried to generalize this concept of gauge invariance to apply to isotopic
spin conservation. . . ” . A concept originated in the 1930s from Heisenberg’s and Wigner’s
papers. There was an additional conservation law, besides the electric charge conservation,
such that if electric charge through gauge invariance can generate an EM field, wouldn’t
this conserved isotopic spin also generate a field?

In that year, gauge theory was generalized, Yang and Mills were motivated by:

• A principle of interaction, many new particles were discovered and the spin, parity
and charge were accurately measured by the new experiments, the question arise, how
do they interact?

• The electric charge serves as a source of electro-magnetic field; an important concept
in this case is gauge invariance, relating the conservation of charge with the gauge
transformation and that gives rise to the Maxwell’s equations. Yang and Mills tried
to generalize the concept of gauge invariance to apply to isotopic conservations, which
is an empirical conservation law, so they asked: “here is a conservation law analogous,
somehow similar, to the electric charge, should it also generate an interaction?”

– 5 –



• The usual principle of invariance under isotopic spin rotation is not consistent with
the concept of localized fields.

At that time there was the concept of local field, Maxwell’s equations, determined
at every point independently, but the gauge transformation of Herman Weyl required an
α which is constant, independent of spacetime and this concept is not in the spirit of
field theory. With the above three motivations they converged on one generalization of
Maxwell’s equations. Since in ordinary EM, by making the gauge transformation of first
and second kind as understood by Weyl, the result is form invariant, Yang and Mills tried
a generalization to isotopic spin requiring the introduction of matrices resulting in ψ being
now a two components object, a column matrix interpreting one entry for proton and one
entry for neutron. Instead of the Aµ → Bµ as a two by two matrix. The next step was
to copy Maxwell and find the field strength of the generalized theory Fµν = Bµ,ν − Bν,µ
except everything is a two by two matrices, but everything looked much more complicated
and didn’t go anywhere. After a while they tried to modify the equation, thinking that
maybe the curl wasn’t enough and they add a quadratic term:

Fµν = Bµ,ν −Bν,µ + ie (BµBν −BνBµ)

With this definition of Fµν the gauge transformation becomes much simpler:
F
′
µν = B

′
µ,ν −B

′
ν,µ + ie

(
B
′
µB
′
ν −B

′
νB
′
µ

)
= S−1FµνS

Later, they realized that from the mathematician point of view that quadratic term
is necessary, but it was unknown to them in 1954 and this became the non-Abelian gauge
theory. They immediately generalized to more complicated groups than the isotopic spin
arising from an SU (2) invariance, the procedure is the same for any Lie group. Once this
generalization is understood, it is better instead of as matrices, to rewrite the equation in
components form:

Figure 1: Yang generalization of Maxwell

The first equations are a combination of Faraday’s law and Gauss’s law for Abelian
and non-Abelian case. Similarly, the equations in the second row are a combination of
Coulomb’s and Ampere’s laws in the in both cases.

The additional index i in the non-abelian case is there because when the group becomes
larger than the electromagnetic group U (1) , there are more components, for example in
the SU (2) there are three components, SU (3) there are eight components. Only in the
special case of U (1) it is possible to drop both, the index and the squared term, because
in an Abelian case the commutator is zero. The term Cijk is called the structure constants,
satisfying the following algebraic equation: CiabC

j
ic +CibcC

j
ia +CicaC

j
ib = 0 known as Jacoby

equation.
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Group theory became important when Sophus Lie in the latter part of nineteen cen-
tury generalized the theory into continuous groups, the groups of transformations. The
distinction between different groups was done mainly by Elie Joseph Cartan, he solved the
Jacoby equation, in 1895 he showed that there are four different types of solutions plus five
exceptional type of solutions. In one stroke he clarified the structure of all Lie groups such
as SU (2) , SU (3) , G (2) , . . . are different type of solutions of this Lie algebra.

Another reason for which non-abelian gauge theory was criticized was that it seemed
to require the existence of massless charged particles, Pauli believed that the theory would
not make sense theoretically and experimentally. In 1960s the concept of spontaneous
symmetry breaking was introduced which led to a series of major advances, finally to a
U (1) × SU (2) × SU (3) gauge theory of electroweak and strong interactions, called the
Standard Model. In the forty some years since 1970 the international theoretical and
experimental physics community working in “particles and fields” combined their efforts
in the development and verification of this model, with spectacular success, climaxing in
the discovery of the “Higgs Boson” in 2012 by two large experimental groups at CERN,
each consisting of several thousand physicists. Despite its success, most physicists believe
the standard model is not the final story. One of its chief ingredients, the symmetry
breaking mechanism, was considered by Yang a phenomenological construct, but it remains
a fundamental mechanism, provided that a scalr field exists with an associated potential.
Analogies with the four ψ interaction in Fermi’s beta decay theory can be made. That
theory was also very successful for almost 40 years after 1933, but finally replaced by the
deeper U (1) × SU (2) electroweak theory, that works around the problem of the operator
being non-re-normalizable, generating non-unitary contributions at high energies.

1.4 The emergence of a central mathematical construct

Entirely independent of developments in physics there emerged, during the first half of
the 20th century, a mathematical theory called “Fiber Bundle Theory” , which had diverse
conceptual origins:

• Differential forms (Cartan)

• Statistics (Hotelling)

• Topology (Whitney)

• Global differential geometry (Chern)

• Connection theory (Ehresman)

• Etc. . .

The great diversity of its conceptual origin indicates that fiber bundle is a central
mathematical construct. It came as a great shock to both physicists and mathematicians
when it became clear in the 1970s that the mathematics of gauge theory, both Abelian
and non-Abelian, is exactly the same as that of fiber bundle theory. But it was a welcome
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shock, as it served to bring back the close relationship between the two disciplines which
had been interrupted through the increasingly abstract nature of mathematics since the
middle of the 20th century.

In 1975 after C.N. Yang learned the rudiments of fiber bundle theory from a mathe-
matician colleague James Harry (Jim) Simons it was clear that Dirac, in the 1931 paper on
the magnetic monopole, discovered trivial and non-trivial bundles before mathematicians.
Ordinary EM uses the mathematics of trivial bundle, but EM with magnetic monopoles
uses the full fiber bundle theory, which is the non-trivial one.

In the late 1960 Yang realizes the similarity between the equation of general relativity
defining the Riemann curvature tensor and the non-Abelian field strength, in fact with a
proper notation the two equations are not similar, they are exactly the same:

Figure 2: Taken from Yang’s lecture notes - similarity between the non-abelian gauge
theories

As mentioned before, Yang’s colleague, the distinguished mathematician Jim Simon,
looks at the equations and states: “They must be both fiber bundles. . . ” . Yang was
impressed with the fact that gauge fields are connections on fiber bundles which the math-
ematicians developed without reference to the physical world, and in 1975 speaking with
Shiing-Shen Chern says: “this is both thrilling and puzzling, since you mathematicians
dreamed up these concepts out of nowhere.” , he immediately protested, “No, no. These
concepts were not dreamed up. They were natural and real.” . From the mathematician
point of view, just building upon the concepts of beautiful structure, they have created the
concept of fiber bundle. Then the fundamental question arises, since these natural and real
ideas are without reference to the real world, why were they used in the real world?

In 1961, M. Stone [7] argues that: “mathematics is entirely independent of the physical
world, with no necessary connections beyond the vague and mystifying one implicit in the
statement that thinking takes place in the brain.” His reasoning was based on the fact
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that Mathematics in the beginning of 20th century became axiomatized, a tendency under
Hilbert’s influence assuming that mathematics can be made as a pure logical structure. In
the 19th century Mathematics was deeply related to the physical world, but in the 20th

century one of its greatest contribution was to break away from reality.
In 1972 F. J. Dyson [8] wrote: “As a working physicist, I am acutely aware of the fact

that the marriage between mathematics and physics, which was so enormously fruitful in
past centuries, has recently ended in divorce.” . Res Jost remarked on this “divorce” : “As
usual in such affairs, one of the two parties has clearly got the worst of it.”

Mathematics and Physics remarried since the late 1970s, thanks to gauge theory and
string theory. Wu and Yang played a central role by publishing the following table that got
mathematicians again interested in physics:

Figure 3: Gauge field - Bundle relations
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Figure 4: Relation between Math and Physics

Yang’s point of view [9] is that Mathematics and Physics maybe viewed as two leaves,
they mostly do not overlap, but in a little percentage of each domain there is a common
ground and: “the amazing thing is that in the overlapping region, ideas and concepts are
shared in a deep way, but even there, the life force of each discipline runs along its own
veins...they have their separate aims and tastes. . . they have different value judgments and
they have different traditions.” .
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2 Abelian case

The concepts treated will be quantization, phase and symmetry. The main ideas are that
in electromagnetism the vector potential Aµ is arbitrary to some extent Aµ → Aµ − ∂µΛ

and in quantum mechanics the phase of ψ is arbitrary ψ → ψeiθ . The question posed by
Weyl is, can we make θ local, that is dependent on space and time θ = θ (x, y, z, t) ?

Changing θ is like changing the phase convention, thinking about the complex plane,
a phase convention is just a rotation. How to make precise the idea such that physics
remains invariant by the choice of phase? Can it be changed at different spacetime points
arbitrarily?

At the classical level, the principle of locality can be used to force electromagnetism
and quantum mechanics together, as we will see, by starting with magnetostatics and by
adding quantum mechanics it will be possible to have only a local phase.

2.1 Magnetostatics

Let A → A−OΛ and ψ → ψeiθ , with a local phase depending on space θ = θ (x, y, z) , then
by starting with EM there are four coupled equations for three unknowns: O × B = 4πJ

and O · B = 0 . The question is, what is physical? Because B has to little information,
we have never seen magnetic monopoles, but the equations allow us to set a source or sink
of magnetic field. Whilst A has too much information, it is important to go beyond B

but not the full A. As was discussed earlier “a bit” of A will do and it is fundamental
compared with B as the Aharonov-Bohm [4] experiment has shown. Let’s arrive at the
gauge transformation in EM. Assume that the magnetic field is given by the curl of the
vector potential, then we can absorb the divergence free notion of the magnetic field with
basic law from calculus: O ·B = 0⇒ B = O×A. Since A → A−OΛ , by taking the curl on
both side it yields: O×A → O×A−O× (OΛ) which leaves the definition unchanged, since
O×(OΛ) = 0. The result is an improvement, because there are now three coupled equations
for three unknowns since O× (O×A) = 4πJ can be rewritten as O (O ·A)−O2A = 4πJ ,
which yields for x -direction:

∂x (∂xAx + ∂yAy + ∂zAz)−
(
∂2
x + ∂2

y + ∂2
z

)
Ax = 4πJx

It is now possible to use the gauge degree of freedom, with A → A − OΛ , taking the
divergence on both sides yield OA → OA − O2Λ . By suitably choosing Λ , we can set
OA−O2Λ = 0 . The trick is that we can always make such a choice by noting that O2Λ = f

has a solution. For physicists this is just like the Poisson equation in electrostatic, given
a charge density find the potential, of course a solution exists and can be written down.
Therefore, by suitable choice it is possible to go to a new A , whose divergence is always 0.
This step achieves a great deal, now there are three decoupled equations in three unknowns
since O (O ·A) − O2A = 4πJ with the choice of Λ that yields O · A = 0 , can be written
for x -direction:
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O2Ax = −4πJx

Therefore, for practical computations the advantage of using A reduces from 4 coupled
to 3 coupled equations and the choice of gauge, the gauge degree of freedom, decouples
the three equations. An analogy from electrostatic can be drawn: Jx "generates" Ax as ρ
"generates" φ:

O2φ = −4πρ

O2Ax = −4πJx

That yields as a solution: Ax (r) =
∫ Jx

(
r
′)

|r−r′ | d
3r
′ . Gauge redundancy adds new unphys-

ical degree of freedom in the Aµ description, and the gauge fixing bring us back to the
correct counting of the physical degree of freedom in whatever description.

2.2 Adding Quantum Mechanics

In this subsection we will see that following Weyl’s intuition we will find a relation between
gauge degree of freedom in EM and the local phase degree of freedom in QM. In the following
calculation the speed of light in vacuum c = 1. The quantum mechanical Schroedinger
equation can be written as the Hamiltonian operator acting on a wave-function ψ yielding
the eigenvalue E multiplying ψ. It is defined as

(
1

2m (p− eA)2 + V
)
ψ = Eψ

Since p = −i}O, it is possible to define (p − eA)ψ = (−i}O − eA)ψ. The four-vector
generalization is performed by letting the covariant exterior derivative be Dµ = ∂µ + eAµ.
The question is, if A → A − OΛ , does E stay the same? That is, a solution to the
Schroedinger equation under a transformation of A, is it still a solution? So |ψ|2 shouldn’t
change, therefore the only possibility is that the phase may change to compensate, in
quantum mechanics we need this degree of freedom and the phase can be thought of as
arbitrary. In the trivial example where the phase θ is constant, then a solution stays a
solution, if ψ → ψeiθ, every term is multiplied by eiθ.

Let θ = θ (x, y, z) be a function of position, then taking the gradient on both side of
ψ → ψeiθ, yields: Oψ → (Oψ) eiθ + (iOθ)ψeiθ, which is not true that every factor gets
multiplied by eiθ. The idea that will marry EM and QM comes about by doing both at the
same time, changing the phase of the wave-function and changing A :

ψ → ψeiθ

A → A − OΛ

So that (p− eA)ψ = (−i}O− eA)ψ . The idea is that if θ and Λ are suitably related,
then the task is to find the proportionality constant and arrange for these two quantities
Oθ and OΛ to cancel each other’s.
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(−i}O− eA)ψ → −i}O
(
ψeiθ

)
− e (A− OΛ)

(
ψeiθ

)

−i}O
(
ψeiθ

)
−e (A− OΛ)

(
ψeiθ

)
= (−i}Oψ)

(
eiθ
)

+(−i}ψ) (iOθ)
(
eiθ
)
−eA

(
ψeiθ

)
+eOΛ

(
ψeiθ

)
The first and the third term is what we previously had ((−i}O− eA)ψ) eiθ, so the

second and fourth term must cancel, so that a solution stays a solution and it is independent
of ψ:

(}Oθ + eOΛ)
(
ψeiθ

)
= 0

which is solved for Λ = −}
eθ. The electromagnetic function Λ and the quantum phase

θ, if they are related in this way, with the proportionality factor involving the ratio }
e , then

a solution of the Schroedinger equation stays a solution and like in the trivial case, every
term is just multiplied by eiθ. This solves the problem of the arbitrariness, to guarantee
that we are describing the same physics, an A and an A′ must only differ by }

eOθ such
that a solution → solution:

ψ → ψeiθ

A → A +
}
e
Oθ

In summary:

Gauge degree of freedom in EM ⇐⇒ Local phase degree of freedom in QM

To turn it around, if we would have start with QM without knowing about EM, insisting
that the phase degree of freedom must be made local, we would have discovered that we
need Aµ, we are forced to introduce a four-vector potential→ In some sense, forced to have
EM to have a local phase symmetry. This is the essence of what professor Yang stated:
“symmetry dictates interactions” . That is not how history went for EM, first we had the
experimental knowledge, then we understood that the requirement of symmetry dictates
interactions, but this is exactly what happened for Quantum Chromodynamics where the
gauge transformation is a little bit more complicated. In this case it is this local invariance,
that forces the interaction to be the Yang-Mills theory. The U (1) symmetry forces the
interaction for EM, so that for ψ → ψeiθ, we have θ as just a number. In Quantum
Chromodynamics the SU (3) is the symmetry group and to respect this local degree of
freedom ψ transforms differently: ψ → ψeiθ

aTa .
When we discuss quantum field theory, the concept of wave function is replaced by

that of field and in the same spirit, but opposite view, we can take the Dirac Lagrangian
in terms of a fermion field and imposing local U(1) invariance without knowing anything of
QM.
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2.3 Differential geometry for physicists

We will discuss a basic introduction to local vector space, parallel transport, covariant
derivative, connection 1-form, basis vectors before going back to EM and the generalization
to non-Abelian theories.

Local vector space The usual idea is that there is a complex-valued function ψ , which
is a map from a domain to a range, that takes values from a base space B , to a vector
space V .

Let ψ (x) = ψ1 (x) + iψ2 (x), with x = x, y, z, t.

Figure 5: Idea of a wave function

From the above discussion about EM, we can choose a local phase convention in different
places, that means is possible to rotate the wave-function at any point. It is assumed that
there exists a “private” vector space unique to any point in the base space, let’s say points
x and y ∈ B, then there exist two vector spaces defined in the below picture by V(x) and
V(y):

Figure 6: Local vector space

This is a pictorial representation of what is meant by the fact that the phase convention
is local, the real and imaginary axes (black arrows) may rotate from a point x to a point y.
Starting with the idea of a function, a mapping from one base space to one vector space,
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we want to generalize the idea of a function, as a mapping from one base space to many
vector spaces. In the limiting case a “private” vector space at each point of the base space.
The vector spaces are isomorphic, in the sense that they are not the same, but there exists
a smooth transformation between them, they differ by an overall symmetric transformation
and in particular, they can have different basis vectors. In general, ψ (x) : B → V (x), with:

B = b-dim manifold
V = v-dim manifold.

In the special case of EM: v = 2, ψ = ψ1 + iψ2 = e1ψ
1 +e2ψ

2, with the basis vectors e1 = 1

and e2 = i.

Parallel transport When vectors live on different vector spaces, then the operation of
subtracting vectors belonging to different vector spaces is not trivial, this is one of the key
ingredients of relativity, since the law of motion involves the change in the momentum. The
change in momentum, let’s say a particle goes from “here” to “there” , means taking the
difference between two momentum vectors which belong to two different vector spaces, one
vector space at “here” and one vector space at “there” . To understand how to subtract
the two vectors, we need the concept of parallel transport, that will keep the vector the
same, but not its components, because the basis vectors may have changed.

Let ψ (x) = A, ψ (x+ ∆x) = B and A′ = the parallel transport of A at x + ∆x as in
the below figure:

Figure 7: Parallel transport

Then the only subtraction that makes sense is ψ (x+ ∆x) − ψ (x) = B − A′. The
physical motivation for this is the fact that the phase angle is arbitrary meaning that the
vector spaces are twisted, rotated. In more generality, to push a vector by an amount
∆x, the usual operator is the exponential defined as e∆xµ∂µ , that for small ∆x (meaning
infinitesimal transformation), can be expanded in a Taylor series and by keeping just the
linear terms is given by: e∆xµ∂µ ≈ 1 + ∆xµ∂µ.

Covariant derivative In a parallel transport it is also needed to do a linear transforma-
tion of the components, which differs from the identity also by a small amount proportional

– 15 –



to ∆x. Let the small transformation be defined as such e∆xµΓµ , with Γ = (v × v) -matrix,
that for small ∆x can be also expanded in a Taylor series given by: e∆xµΓµ ≈ 1 + ∆xµΓµ.
To keep in mind is that the push (forward) of a single vector can be extended to the en-
tire vector field. What is needed is a shift ∂µ, component by component and a mixing
(due to the rotation of axis). The mixing is the just described linear transformation of
the components by Γµ . In the example of a quantum mechanical wave-function defined
above on spacetime, Γµ is a set of 4 matrices, each of which is a (2× 2) -matrix. That is in
components form, Γ has three indices, one index µ running through the dimension of the
base space and other two i, j labeling which row and which column of Γ : (Γµψ)i = Γiµjψ

j .
General relativity is a special example and the three indices are equivalent, but the

distinction is still there, one index for the base space and two indices for the vector space.
Convention, in dealing with real fields, Γµ is a real matrix, but if we need to preserve
unitarity Γµ is an anti-Hermitian matrix.

Connection 1-form To relate infinitesimally closed vector spaces, mathematicians make
use of Γµ to connect V (x) to V (x+ ∆x), calling it, the connection 1-form. The two
operations needed to parallel transport a vector can be simplified e∆xµ∂µe∆xµΓµ = e∆xµDµ ,
by defining Dµ = ∂µ+Γµ to be the covariant exterior derivative. Again, Γµ tells us how the
basis in neighboring vector spaces are related, such that for any path in the base space, Γµ
connect V (x) for x along that path locally, then any point of the manifold can be reached,
by summing up all the local paths.

This is the same as in the case of potential energy and work done, when calculating
from an initial point to a final point, the work done is only defined locally, for infinitesimal
displacement, and by adding them all up, it is possible to calculate from any initial to any
final point. In general, there is no guarantee that the result is path independent and if the
results are different for different paths, then you cannot define a potential energy, this is
the same idea, but to understand the similarity, the concept of curvature is needed.

Basis vectors and connection Let A (x) be a vector field, then define a new vector field
displaced called AD (x) such that: AD (x) = A (x+ %) = Ai (x+ %) ei (x+ %) ≈ A (x) +

%µ
((
∂µA

i
)
ei +Aj (∂µej)

)
that means it is possible to expand A (x+ %) in terms of the

basis vectors ei (x+ %) and the expansion coefficients Ai (x+ %), which are the components
at the point x+ % and then take the Taylor series expansion to first order. The key idea is
that now we have to differentiate the basis vectors ∂µej . If the basis vectors are constant,
like in the case of a cartesian coordinate system in flat space or equivalently if there is just
one vector space for every point of the base space, that is a global vector space, the second
term Aj (∂µej) drops out.

We can now identify, DµA =
(
∂µA

i
)
ei + Aj (∂µej) and define ∂µej = P iµjei such that

DµA =
(
∂µA

i
)
ei + P iµjeiA

j =
(
∂µA

i + P iµjA
j
)
ei =⇒ Dµ = ∂µ + Pµ which shows that P

is indeed the connection and finally we can identify ∂µej = Γiµjei . The connection 1-form
can be calculated if it is known how the basis vectors change with respect to position in
base space.

– 16 –



Figure 8: Closed loop parallel transport

Curvature If the connection Γµ is path independent, then all the V (x) can be patched
together consistently V (x) → V ; else there is curvature. Equivalently: Does a parallel
transport around a closed loop reproduce the original vector? Let A := αµDµ and B :=

βµDµ and the transformation to go around the loop symbolically as: L = e−Be−AeBeA,
read from right to left. Meaning start from a point x, with a vector η, parallel transport an
amount α, then displace an amount β, then −α and finally −β to come back at the same
point. If η′ lies along η, then there is no curvature. As in the picture, if the dashed vector
η′, which is the original vector η after the displacement around the closed loop, points in
another direction, then there is curvature. The transformation L = e−Be−AeBeA around
the loop can be written as: L ≈ 1− [A,B] = 1−αµβν [Dµ, Dν ] , which defines the curvature
Rµν in terms of the commutator between two covariant derivatives: Rµν = [Dµ, Dν ]. As
we defined earlier, the covariant derivative is Dµ = ∂µ + Γµ, therefore we can rewrite the
curvature in terms of the connection Rµν = [Dµ, Dν ] = [∂µ + Γµ, ∂ν + Γν ] = ∂µΓν −∂νΓµ+

[Γµ,Γν ]. This is a matrix equation, (Rµνψ)i = Riµνjψ
j .

Figure 9: Write some caption here

Change of basis What if we change basis, what happens to the connection and the curva-
ture? Let ψ (x)→ eiθ

a(x)Taψ (x) by the following transformation eiθa(x+∆x)Tae−∆xµDµeiθ
a(x)Ta .

Pictorially it means that we can make a local change of basis at V (x), represented by a
transformation from black to green arrow, whilst the change of basis at V (x+ ∆x) is rep-
resented by going from the red to the blue vector. Since there exist a Γ that takes you from
black arrow to red arrow. There must also exists a Γ

′ that represent directly a transfor-
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mation in the changed basis, represented as a transformation from the green to the blue
arrow.

Let T (x) = θa (x)Ta be an infinitesimal matrix, then

eiθ
a(x+∆x)Tae−∆xµDµe−iθ

a(x)Ta = eiT (x+∆x)e−∆xµDµe−iT (x)

eiT (x+∆x)e−∆xµDµe−iT (x) = (1 + i (T + ∆xµ∂µT )) (1−∆xµDµ) (1− iT )

(1 + i (T + ∆xµ∂µT )) (1−∆xµDµ) (1− iT ) = 1−∆xµ (Dµ + i [T,Dµ]− i∂µT )

Two things are infinitesimal, the displacement ∆xµ but also each rotation θa , because
if it is possible to understand the change for an infinitesimal rotation it can be added up to
a finite rotation. It is possible to define the new connection by understanding the covariant
exterior derivative Dµ = ∂µ + Γµ under this change of basis Dµ → Dµ + i [T,Dµ]− i∂µT ,
such that Γµ → Γµ + i [T,Dµ] − i∂µT is the transformation law for the connection 1-form
(a nonlinear transformation).

The transformation for the curvature it turns out it is easier than the transformation of
the connection, it is purely linear if related to closed loops: eiTRµνe−iT = Rµν + i [T,Rµν ].
That is why the statement that Rµν is equal to 0 , is an invariant statement, if true
in one coordinate system, it remains true in all coordinate systems, which means that a
vector under a parallel transport around a closed loop stays the same, a statement that
can be made without reference to the coordinate system, it is not a statement about the
components of the vector.

2.4 Back to EM

Armed with all the mathematical machinery, let’s define the general form of the internal
group to be eiθaTa , with the set (Ta) as matrices running from 1 to the dimension of the
internal space and the set (θa) as parameters. (Ex. For SU (2), a = 1, 2, 3. ) For EM
all we are talking, is about U (1), just a phase transformation, no need for an index a.

Therefore Ta is just a 1x1-anti-Hermitian matrix (the identity) and θa = θ the phase angle.
In order to use Γ in the definition of the covariant exterior derivative D defined above,
we can redefine the connection 1-form as Γµ = ieAµ and let it act on the complex valued
wave-function: Γµ

(
ψ1 + iψ2

)
= ieAµ

(
ψ1 + iψ2

)
. We can remove the complex imaginary

′′ i ′′ by introducing the matrix notation: Γµ

(
ψ1

ψ2

)
= eAµε

i
j

(
ψ1

ψ2

)
. With εij =

(
0 −1

1 0

)
is an anti-symmetric matrix which is representing just what a multiplication by i does, it
turns real into imaginary and imaginary into minus real. The connection 1-form for the
EM case can therefore be represented as ieAµ or eAµε

i
j and we can conclude that the

vector potential tells you how to transport a wavefunction along a path. The two indices
missing in the former representation are just in the factor i. We can now draw a new link
between the two disciplines:
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Mathematics: Physics:
Connection 1-form Γµ ⇐⇒ Vector potential Aµ

The curvature in this case is easier, the group is Abelian and the connection along
different direction commute, [Γµ,Γν ] = 0, then:

Rµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] = ∂µΓν − ∂νΓµ = ie (∂µAν − ∂νAµ) = ieFµν

Under a change of basis, let the infinitesimal transformation be T (x) = θa (x)Ta = θ,

then connection changes as we defined by Γµ → Γµ + i [T,Dµ]− i∂µT , which for this case
reduces to Aµ → Aµ−i∂µθ. We can now draw another new link between the two disciplines:

Mathematics: Physics:
Connection 1-form Γµ ⇐⇒ Vector potential Aµ
Curvature 2-form Rµν ⇐⇒ EM field strength tensor Fµν

The electromagnetic field has to do with the fact that if the phase convention is changed
at two different points and the two processes do not commute, then there is a non-trivial
EM field. In the example above, if the complex planes fail to patch together trivially, then
there is a non-trivial E and B. The curvature and the connection are the starting points
in the discussion about Riemann Geometry and Fiber Bundles.
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3 Non-Abelian case

The internal group has the general form eiθ
aTa , the set {Ta} are n by n matrices called

generators and the set {θa} are parameters. The generators of a group are represented by
matrices, which must be constructed with given properties for each given representation of
the group (e.g. fundamental, adjoint representation.) For the general case U (n), a runs
from 1 to n2, for the special case SU (n), a runs from 1 to n2 − 1. The wave function is
replaced by field and can be thought of as a column vector ψ =

(
ψ1, . . . , ψn

)T . We can
then define the connection 1-form analogously to the EM case by letting g be the coupling
constant instead of the electric charge e : Γµ = igAaµTa. For example in the case of SU (3),
there are n2− 1 = 8 ”photons”, which in particle physics are called gluons. Another way of
understanding is that now there are a = n2 − 1 vector potentials Aaµ, accompanied by the
scalar potentials counterpart. Suppose you have an electron scattering off another electron,
to represent that in field theory, we say it exchanges a photon and there is only one kind of
photon, it couples only to charge. In Quantum Chromodynamics we have a quark scattering
off another quark and the quarks have color, therefore the gluon that is exchanged must
carry two indices so that color is conserved at any given vertex.

It is important to summarize that there are now three types of indices:

The curvature in general is defined as Rµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] = igF aµνTa . Any
matrix can be expanded in terms of Ta and the real expansion coefficients are F aµν . If Rµν
is defined as n by n traceless matrix, like in the case of SU (n) , the expansion does not
involve the term T0 .

The goal is to find an explicit expression for F aµν by starting with the definition of the
connection Γµ and curvature Rµν :

Rµν = ∂µ (igAaνTa)− ∂ν
(
igAaµTa

)
+ (ig)2AaµA

b
ν (Ta, Tb)

Rµν = ig
(((

∂µA
a
ν − ∂νAaµ

)
Ta + igAaµA

b
νfabcTc

))
.

Implying that F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAaµAbν .

Four remarks about the field tensor:

• In EM, Fµν has only two indices, both spacetime indices, but in the non-Abelian case
F aµν , has the third index a in internal space.

• The strength is not given just by the curl of the vector potential, but there is another
term which depends on the strength of the coupling constant.
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• The combination eAµ and gAaν , always appears together, it is possible to shuffle
coefficients, but separating the two, the charge and the vector potential, is a matter
of convenience, the physical object is the combination.

• The field is nonlinear in the potential. If F ∼ ∂A + gAA , then the Lagrangian
schematically goes like the square of the field:

– L ∼ F 2 ∼ (∂A + gAA)2 ∼ (∂A)2+g (∂A)A2+g2A4 , that in turns of Feynman’s
diagram respectively a propagation, a three-point interaction and a four-point
interaction:

Figure 10: Feynman’s diagram respectively a propagation, a three-point interaction and
a four-point interaction

Therefore non-Abelian gauge theory is a non-linear interacting theory, the gluons can
interact with each other and there is no possible principle of superposition.

3.1 Differential geometry for physicists - continued

This is intended to be another basic introduction to manifolds, coordinates, distance, metric,
vectors, connection and curvatures to relate the non-Abelian case of General Relativity.

Manifolds and coordinates A manifold can be thought of as a set that is locally
“similar” to flat space, Euclidean or Minkowski. On a manifold it is possible to define
coordinates, they label the position in the manifold. The coordinates cannot be used to
define distance or vectors. We are used to Cartesian coordinates that bundled together
three concepts: (1) specification of the position of a point, (2) specification of distance
between two points, (3) associated to vectors. On a curved manifold, it is fundamental to
disentangle these three concepts. Coordinates only serve one purpose, specify the position
of a point and they are defined with upper index, say xµ . Since many coordinate systems
are possible, we need to require that physics must be made independent of coordinates.

Distance and metric The central question is: how is distance, say ∆s, related to a
change in coordinates ∆xµ ? Riemannian geometry introduces the concept of metric to find
distances, let two neighboring points say P =

(
x1, . . . , xn

)
andQ =

(
x1 + dx1, . . . , xn + dxn

)
,

then
ds2 = A

(
dx1dx1

)
+B

(
dx1dx2 + dx2dx1

)
+ . . . , or in more general form:
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ds2 = g11

(
dx1dx1

)
+ g12

(
dx1dx2

)
+ g21

(
dx2dx1

)
+ . . .+ gnn (dxndxn)

or in compact form: ds2 = gµνdx
µdxν . Which is a generalization of Pythagoras

theorem to the following: (1) distance must still be quadratic, (2) need not be diagonal and
(3) the coefficients need not to be constant, may depend on position. The tensor g�� with
lower indices is called the metric an n by n matrix. The inverse matrix has upper indices
g�� and it can be used to define new objects by exchanging the index from top to bottom
or vice versa. For example: aµ = gµνa

ν and aµ = gµνaν .

Vectors To define vectors, it is possible to start with the prototypical example, the dis-
placement vector from two neighboring points and then define the other objects with the
“same property” also as vectors. The problem is that on a curved space, the displacement is
not what we would call a “straight arrow” , but an infinitesimal displacement we may argue
that it is a “straight vector” . To recap: xµ =

(
x1, . . . , xn

)
is not a vector, the difference

between two points ∆xµ =
(
∆x1, . . . ,∆xn

)
is not a vector, but the limit for infinitesimal

displacement dxµ =
(
dx1, . . . , dxn

)
is a vector. The basis vectors at a point P , are defined

as dP = dxµeµ , with eµ = ∂P
∂xµ . Which is just like:

i = ex = ∂P
∂x ; j = ey = ∂P

∂y ; k = ez = ∂P
∂z .

Tangent planes Now that we have defined vectors, we need to recognize that the displace-
ment vector dx lives on a tangent plane at the point where the displacement is calculated.
We can think that at every point of the manifold there exists a unique tangent plane and
any displacement vector is a member, element, of a tangent plane. This is the key idea
that links what we have discussed, at each tangent plane you can operate between vectors.
When the manifold is curved, then the tangent planes are different at different points and
we cannot operate with vectors living on different tangent planes. To be compared (sub-
tracted, added. . . , anything learned from linear algebra), the vectors need to coexist on the
same tangent plane. For example, on the surface of a sphere, boundary of a 3-dimensional
ball, there is a unique “private” vector space at each point of the manifold. This is what
Riemann answered, how to subtract two vectors in two different tangent planes and that is
what Einstein used. First parallel transport to the same tangent plane and then compare.
This is the analogous, in the case of EM when you transport a quantum mechanical wave-
function, of rotating the phase before you operate, like subtracting or taking derivatives.
The idea is the same, in EM account for the change of phase, in GR account for the change
of the vector’s components before adding or subtracting.

Connection 1- form Since the tangent plane is a “private” vector space for each point
of the manifold, to connect different vector spaces use the connection 1-form Γµ . As before,
it connects V (x) to V (x+ ∆x) , in Riemannian geometry it is called Christoffel symbol
and as special case, the three indices describing it have the same dimension. Recalling that
to parallel transport a vector, e∆xµ∂µ shifts the argument and e∆xµΓµ causes the mixing of
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components, then e∆xµΓµe∆xµ∂µ = e∆xµDµ , with the covariant derivative Dµ = ∂µ + Γµ
implies that ∂µej = Γiµjei . The last equation tells how the basis vectors change with
position, think that ∂µej is also a vector, then Γiµj are the expansion coefficients of the
other basis vectors ei .

In Riemannian geometry something special happens, the basis vectors are controlled
by the metric, and one can prove the following Γiµj = 1

2g
µλ (gνλ,ρ + gρλ,ν − gνρ,λ) with the

understanding that: ,ν :=
(
∂
∂xµ

)
. In the general case, the vector space has nothing to do

with the underlying manifold and you cannot derive the connection in terms of the property
of the manifold, but in the Riemannian case it is completely determined.

Curvature tensor As derived earlier, Rµν = ∂µΓν−∂νΓµ+[Γµ,Γν ] , can also be written
in component form resulting in Rijµν = ∂µΓijν − ∂νΓijµ + ΓiµkΓ

k
νj −ΓiνkΓ

k
µj up to minus sign,

due to convention.

3.2 General Relativity

General relativity is the theory of gravity that replaces Newtonian inverse square law. In
many ways it is similar to classical electromagnetism and there are in both theories two
sides of the story. Consider the Lorentz law that tells you how charged particles move in
an electric and magnetic field, that is given the two fields E and B, the force law gives you
the acceleration allowing to predict the new velocity at a later time and therefore the new
position can be derived. This is the first part, give the field, predict the motion of particles.
The other half of the theory is the reverse, if you measure everything about the charged
particles, where they are, how they are moving, in other words what is given are the charge
and current densities, Maxwell’s equations do predict the fields, namely given rho and J,
the equations give you E and B.

In general relativity the situation is exactly the same, there are two sides of the story.
The first part, analogous to Lorentz force law, is defined by first giving the field, specifying
the metric of spacetime, then calculate how the particles move. Because the metric just
tells you how to compute distances from coordinates, therefore suppose you know everything
about guv then you can determine the motion of the particle:
0 = dP = d (pµêµ) = (dpµ) êµ + pµΓρµνdx

ν êρ
0 = (dpµ)êµ + pρΓµρνdx

ν êµ
0 = (dpµ + pρΓµρνd xν) êµ
0 = dpµ + pρΓµρνdxν

0 = dpµ

dτ +
Γµρνp

ρd xν

dτ

Let pµ = mdxµ

dτ then d2x
µ

dτ = −Γµρν
dxν

dτ
dxν

dτ is the equation of motion for a point particle.
The second part is again similar, but harder and it will not be derived. If you know

everything about the particles, where they are and how they are moving, which is the
energy momentum densities and energy momentum flux, which together form the energy
momentum current densities tensor, (that is ”similar” to the charge densities and current
densities in the EM case), which is the source, then you can find the field guv. This,
like Maxwell’s equations counterpart for EM, is the harder part. Guv is a symmetric tensor,
unlike Au which has only 4 quantities, it has 10 quantities that implies 10 coupled equations
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in 10 unknowns. Unlikely EM, where it was possible with a gauge choice to uncouple the
equations, now it is not ”yet” possible to decouple them.

3.3 Concluding remarks, a path to unification

Letting non-Abelian gauge theory aside for the moment, what has been described is a formal
resemblance between EM and curved spacetime (gravity) with a deep formal analogy in
terms of the mathematics, the question may be, is there a deep physical unification behind
this formal analogy? The reason that they are described by similar mathematical constructs
may suggest that there is a formal deep relationship between the two. This is one of the
path towards unification, looking at EM and GR in terms of connections and curvatures.
Of course, an undergraduate student may look at Coulomb’s and Newton’s law, and the
mathematical similarity and think about the relationship between electricity and gravity,
is there a common basis for the two? A graduate student will of course say no, electricity
is governed by Maxwell’s equations that are related to the quantum mechanical phase,
which substituted Coulomb’s law and gravity is understood with Einstein’s theory which
has Newton’s law as an approximation. It seems to the author that even though we changed
and better understood both theories, the mathematical similarity just got even deeper, both
in terms of connections and curvatures. By looking at the equations of motion for EM and
Gravity there are already clear distinctions between the two, the equations of motion in the
EM case are linear in the velocity and governed by the change of curvature which is related
to the sources and currents, whilst for gravity, the equations of motion are quadratic in
the velocity and given directly by the connection one-form. Can we pursue an analogy?
One possible solution is trying to look at GR with one more derivative and try to assign
meaning to the derivative of the energy momentum densities as the actual sources and
currents responsible for the change of curvature of spacetime, but in the literature it seems
that one is running into a wall.
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4 Fiber bundle

This chapter follows form the mathematical definitions, propositions, theorems and proofs
that can be found in the Appendices.

4.1 Topological manifolds and bundles

Intuitively, a d-dimensional manifold is a topological space which locally (i.e. around each
point) looks like Rd. Note that, strictly speaking, what is defined in the appendix are real
topological manifolds. We could define complex topological manifolds as well, simply by
requiring that the map x be a homeomorphism onto an open subset of Cd.

Example 4.1. Trivially, Rd is a d-dimensional manifold for any d ≥ 1. The space S1 is a
1-dimensional manifold while the spaces S2, C and T 2 are 2-dimensional manifolds.

Example 4.2. The space S1 is a submanifold of R2 while the spaces S2, C and T 2 are
submanifolds of R3.

Example 4.3. The cylinder C = S1 × R is a 2-dimensional manifold.

4.1.1 Bundles

Products are very useful. Very often in physics one intuitively thinks of the product of two
manifolds as attaching a copy of the second manifold to each point of the first. However,
not all interesting manifolds can be understood as products of manifolds. A classic example
of this is the Möbius strip.1

It looks locally like the finite cylinder S1 × [0, 1], which we can picture as the circle S1

(the thicker line in figure) with the finite interval [0, 1] attached to each of its points in a
“smooth” way. The Möbius strip has a “twist”, which makes it globally different from the
cylinder.

Let denote the bundle (E, π,M) by E π−→M .
Intuitively, the fibre at the point p ∈ M is a set of points in E (represented below as

a line) attached to the point p. The projection map sends all the points in the fibre Fp to
the point p.

1The TikZ code for the Möbius strip was written by Jake on TeX.SE.
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Fp
E

p ∈M

M

4.1.2 Product bundles

Example 4.4. A trivial example of a bundle is the product bundle. Let M and N be
manifolds. Then, the triple (M ×N, π,M), where:

π : M ×N →M

(p, q) 7→ p

is a bundle since (one can easily check) π is a continuous and surjective map. Similarly,
(M ×N, π,N) with the appropriate π, is also a bundle.

4.1.3 Fiber Bundles

Example 4.5. In a bundle, different points of the base manifold may have (topologically)
different fibres. For example, consider the bundle E π−→ R where:

Fp := preimπ({p}) ∼=top


S1 if p < 0

{p} if p = 0

[0, 1] if p > 0

Example 4.6. The bundle M ×N π−→M is a fibre bundle with fibre F := N .

Example 4.7. The Möbius strip is a fibre bundle E π−→ S1, with fibre F := [0, 1], where
E 6= S1 × [0, 1], i.e. the Möbius strip is not a product bundle.

Example 4.8. A C-line bundle over M is the fibre bundle (E, π,M) with fibre C. Note that
the product bundle (M × C, π,M) is a C-line bundle over M , but a C-line bundle over M
need not be a product bundle.

Intuitively, a section is a map σ which sends each point p ∈ M to some point σ(p) in
its fibre Fp, so that the projection map π takes σ(p) ∈ Fp ⊆ E back to the point p ∈M .

Example 4.9. Let (M × F, π,M) be a product bundle. Then, a section of this bundle is a
map:

σ : M →M × F
p 7→ (p, s(p))
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where s : M → F is any map.

The structure-preserving maps for bundles are called bundle isomorphisms.

Example 4.10. The cylinder C is trivial as a bundle, and hence also locally trivial.

Example 4.11. The Möbious strip is not trivial but it is locally trivial.

From now on, we will mostly consider locally trivial bundles.

Remark 4.12. In quantum mechanics, what is usually called a “wave function” is not a
function at all, but rather a section of a C-line bundle over physical space. However, if we
assume that the C-line bundle under consideration is locally trivial, then each section of
the bundle can be represented (locally) by a map from the base space to the total space
and hence it is appropriate to use the term “wave function”.

4.1.4 Application

The author would like the reader to stop and wonder about the way spacetime itself is
defined. Einstein put at the same footing both, space and time realizing them into a unique
4-dimensional manifold. But for anyone not in the field of physics, the concept of space is
indeed different from the concept of time: "...glazing at our surrounding and even up at
the stars, anybody can dream about the infinity of space, but anyone living will realize the
finiteness of time...". Assuming that space and time are two different topological manifolds
that can be described as one unique product bundle manifold is too restricted. A more
general choice which allows locally to be still represented as product bundle, but doesn’t
make any assumption on the global feature, is to interpret spacetime as a fiber bundle. One
approach is to let the base manifold to represent time and the fiber at each point of the
base manifold to represent space. This isn’t such a different concept from what we already
assume: "At every instant of time, it exists a space, that space is not the same at the next
instant of time, further more at every point of that space, a projection to the base manifold
will yield the same instant of time." In a even more down to Earth example, every person
that lives on this planet close to a meridian connecting the south pole to the north pole
will experience the same time, therefore a clock on their wrist would be like a projection
from total space down to base space. By allowing this definition of spacetime, we need to
consider not the functions of time defining the position of an observer, but rather sections.
The initial conditions that are always used in every physical example to set the position
in space of an observer as functions of time, maybe looked instead as sections, because by
using these choices, the smooth maps chosen in a local domain of the base manifold, will
induce a local trivialization allowing to go back to the original definition of spacetime as
product of the two manifolds of space and of time. There is no need to be limited here,
we can make the base manifold complex and letting time be just the real part, allowing
for the imaginary part to be orthogonal to time and no preferred direction, like a phase.
We can even turn the problem around and move towards another definition of spacetime,
by letting the base manifold to be just space and the real valued fiber at each point of
space to represent time itself. What is achieved in this more general thinking is to be more
humble, assuming that spacetime is just a product bundle locally makes perfect sense and
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we can make measurements on it, but believing that the structure is preserved at large
scale (like the one used for Cosmology) or at the small scale (like the one used for Quantum
Mechanics) is requiring too much from our local point of view as meter sized observers of
our universe.
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4.2 Principal and Associated bundle

We would like to define a vector field on a manifold M as a “smooth” map that assigns
to each p ∈ M a tangent vector in TpM . However, since this would then be a “map” to
a different space at each point, it is unclear how to define its smoothness. The simplest
solution is to merge all the tangent spaces into a unique set and equip it with a smooth
structure, so that we can then define a vector field as a smooth map between smooth
manifolds.

4.2.1 Tangent bundle

Let AM be a smooth atlas on M and let (U, x) ∈ AM . If X ∈ preimπ(U) ⊆ TM , then
X ∈ Tπ(X)M , by definition of π. Moreover, since π(X) ∈ U , we can expand X in terms of
the basis induced by the chart (U, x):

X = Xa

(
∂

∂xa

)
π(X)

,

where X1, . . . , XdimM ∈ R. We can then define the map

ξ : preimπ(U)→ x(U)× RdimM ∼=set R2 dimM

X 7→ (x(π(X)), X1, . . . , XdimM ).

Assuming that TM is equipped with a suitable topology, for instance the initial topol-
ogy (i.e. the coarsest topology on TM that makes π continuous), we claim that the pair
(preimπ(U), ξ) is a chart on TM and

ATM := {(preimπ(U), ξ) | (U, x) ∈ AM}

is a smooth atlas on TM . Note that, from its definition, it is clear that ξ is a bijection. We
will not show that (preimπ(U), ξ) is a chart here, but we will show that ATM is a smooth
atlas. The tangent bundle of a smooth manifold M is therefore itself a smooth manifold
of dimension 2 dimM , and the projection π : TM → M is smooth with respect to this
structure.

Similarly, one can construct the cotangent bundle T ∗M to M by defining

T ∗M :=
∐
p∈M

T ∗pM

and going through the above again, using the dual basis {(dxa)p} instead of {
(
∂
∂xa

)
p
}.

4.2.2 Vector fields

Now that we have defined the tangent bundle, we are ready to define vector fields.

Remark 4.13. An equivalent definition is that a vector field σ on M is a derivation on the
algebra C∞(M), i.e. an R-linear map

σ : C∞(M)
∼−→ C∞(M)
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satisfying the Leibniz rule (with respect to pointwise multiplication on C∞(M))

σ(fg) = g σ(f) + f σ(g).

This definition is better suited for some purposes, and later on we will switch from one to
the other without making any notational distinction between them.

Example 4.14. Let (U, x) be a chart on M . For each 1 ≤ a ≤ dimM , the map

σ : U → TU

p 7→
(

∂

∂xa

)
p

is a vector field on the submanifold U . We can also think of this as a linear map

∂

∂xa
: C∞(U)

∼−→ C∞(U)

f 7→ ∂

∂xa
(f) = ∂a(f ◦ x−1) ◦ x.

By abuse of notation, one usually denotes the right hand side above simply as ∂af .

U R U R

x(U) ⊆ RdimM x(U) ⊆ RdimM

x

f

x

∂af

f◦x−1 ∂a(f◦x−1)

Recall that, given a smooth map φ : M → N , the push-forward (φ∗)p is a linear map
that takes in a tangent vector in TpM and outputs a tangent vector in Tφ(p)N . Of course,
we have one such map for each p ∈M . We can collect them all into a single smooth map.

4.2.3 Differential forms

Another way to define a differential form, besides the one discussed in the appendix is as a
smooth section of the appropriate bundle on M , i.e. as a map assigning to each p ∈ M an
n-form on the vector space TpM .

Example 4.15. a) A manifold M is said to be orientable if it admits an oriented atlas,
i.e. an atlas in which all chart transition maps, which are maps between open subsets
of RdimM , have a positive determinant.

If M is orientable, then there exists a nowhere vanishing top form (n = dimM) on
M providing the volume.

b) The electromagnetic field strength F is a differential 2-form built from the electric
and magnetic fields, which are also taken to be forms. We will define these later in
some detail.

c) In classical mechanics, if Q is a smooth manifold describing the possible system con-
figurations, then the phase space is T ∗Q. There exists a canonically defined 2-form
on T ∗Q known as a symplectic form, which we will define later.
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If ω is an n-form, then n is said to be the degree of ω. We denote by Ωn(M) the
set of all differential n-forms on M , which then becomes a C∞(M)-module by defining the
addition and multiplication operations pointwise.

Example 4.16. Of course, we have Ω0(M) ≡ C∞(M) and Ω1(M) ≡ Γ(T 0
1M) ≡ Γ(T ∗M).

Similarly to the case of forms on vector spaces, we have Ωn(M) = {0} for n > dimM ,
and otherwise dim Ωn(M) =

(
dimM
n

)
, as a C∞(M)-module.

We can specialize the pull-back of tensors to differential forms. This works for any
smooth map φ, and it leads to the mantra:

Vectors are pushed forward,
forms are pulled back.

The tensor product ⊗ does not interact well with forms, since the tensor product of two
forms is not necessarily a form. Recall the definition of the gradient operator at a point
p ∈M . We can extend that definition to define the (R-linear) operator:

d: C∞(M)
∼−→ Γ(T ∗M)

f 7→ df

where, of course, df : p 7→ dpf . Alternatively, we can think of df as the R-linear map

df : Γ(TM)
∼−→ C∞(M)

X 7→ df(X) = X(f).

Remark 4.17. Locally on some chart (U, x) on M , the covector field (or 1-form) df can be
expressed as

df = λa dxa

for some smooth functions λi ∈ C∞(U). To determine what they are, we simply apply both
sides to the vector fields induced by the chart. We have

df

(
∂

∂xb

)
=

∂

∂xb
(f) = ∂bf

and
λa dxa

(
∂

∂xb

)
= λa

∂

∂xb
(xa) = λa δ

a
b = λb.

Hence, the local expression of df on (U, x) is

df = ∂af dxa.

Note that the operator d satisfies the Leibniz rule

d(fg) = g df + f dg.

We can also understand this as an operator that takes in 0-forms and outputs 1-forms

d: Ω0(M)
∼−→ Ω1(M).

This can then be extended to an operator which acts on any n-form.
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Remark 4.18. Note that the operator d is only well-defined when it acts on forms. In order
to define a derivative operator on general tensors we will need to add extra structure to our
differentiable manifold.

Remark 4.19. Informally, we can write this result as Φ∗d = dΦ∗, and say that the exterior
derivative “commutes” with the pull-back.

However, you should bear in mind that the two d’s appearing in the statement are
two different operators. On the left hand side, it is d: Ωn(N) → Ωn+1(N), while it is
d: Ωn(M)→ Ωn+1(M) on the right hand side.

Remark 4.20. Of course, we could also combine the operators d into a single operator acting
on the Grassmann algebra on M

d: Ω(M)→ Ω(M)

by linear continuation.

Example 4.21. In the modern formulation of Maxwell’s electrodynamics, the electric and
magnetic fields E and B are taken to be a 1-form and a 2-form on R3, respectively:

E := Exdx+ Eydy + Ezdz

B := Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy.

The electromagnetic field strength F is then defined as the 2-form on R4

F := B + E ∧ dt.

In components, we can write
F = Fµν dxµ ∧ dxν ,

where (dx0, dx1,dx2,dx3) ≡ (dt,dx,dy,dz) and

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


The field strength satisfies the equation

dF = 0.

This is called the homogeneous Maxwell’s equation and it is, in fact, equivalent to the two
homogeneous Maxwell’s (vectorial) equations

∇ ·B = 0

∇×E +
∂B

∂t
= 0.

In order to cast the remaining Maxwell’s equations into the language of differential forms,
we need a further operation on forms, called the Hodge star operator.
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Recall from the standard theory of electrodynamics that the two equations above imply
the existence of the electric and vector potentials ϕ and A = (Ax, Ay, Az), satisfying

B = ∇×A

E = −∇ϕ− ∂A

∂t
.

Similarly, the equation dF = 0 on R4 implies the existence of an electromagnetic 4-potential
(or gauge potential) form A ∈ Ω1(R4) such that

F = dA.

Indeed, we can take
A := −ϕdt+Axdx+Aydy +Azdz.

Example 4.22. In the Hamiltonian formulation of classical mechanics one is especially in-
terested in the cotangent bundle T ∗Q of some configuration space Q. Similarly to what we
did when we introduced the tangent bundle, we can define (at least locally) a system of
coordinates on T ∗Q by

(q1, . . . , qdimQ, p1, . . . , pdimQ),

where the pi’s are the generalised momenta on Q and the qi’s are the generalised coordinates
on Q (recall that dimT ∗Q = 2 dimQ). We can then define a 1-form θ ∈ Ω1(T ∗Q) by

θ := pi dqi

called the symplectic potential. If we further define

ω := dθ ∈ Ω2(T ∗Q),

then we can calculate that
dω = d(dθ) = · · · = 0.

Moreover, ω is non-degenerate and hence it is a symplectic form on T ∗Q.

4.2.4 Lie group actions

Remark 4.23. From the definition given in the appendix, the smooth structures on G and
M were only used in the requirement that B be smooth. By dropping this condition, we
obtain the usual definition of a group action on a set. Some of the definitions that we will
soon give for Lie groups and smooth manifolds, such as those of orbits and stabilizers, also
have clear analogues to the case of bare groups and sets.

Example 4.24. Let G be a Lie group and let R : G→ GL(V ) be a representation of G on a
vector space V . Define a map

B : G× V → V

(g, v) 7→ g B v := R(g)v.

– 33 –



We easily check that e B v := R(e)v = idV v = v and

(g1 • g2) B v := R(g1 • g2)v

= (R(g1) ◦R(g2))v

= R(g1)(R(g2)v)

= g1 B (g2 B v),

for any v ∈ V and any g1, g2 ∈ G. Moreover, if we equip V with the usual smooth structure,
the map B is smooth and hence a Lie group action on V . It follows that representations of
Lie groups are just a special case of left Lie group actions. We can therefore think of left
G-actions as generalised representations of G on some manifold.

Remark 4.25. Since for each g ∈ G we also have g−1 ∈ G, if we need some action of G on
M , then a left action is just as good as a right action. Only later, within the context of
principal and associated fibre bundles, we will attach separate “meanings” to left and right
actions. Some of the next definitions and results will only be given in terms of left actions,
but they obviously apply to right actions as well.

Remark 4.26. Recall that if we have a basis e1, . . . , edimM of TpM and X1, . . . , XdimM are
the components of some X ∈ TpM in this basis, then under a change of basis

ẽa = Abaeb,

we have X = X̃aẽa, where
X̃a = (A−1)abX

b.

Once expressed in terms of principal and associated fibre bundles, we will see that the
“recipe” of labelling the basis by lower indices and the vector components by upper indices,
as well as their transformation law, can be understood as a right action of GL(dimM,R)

on the basis and a left action of the same GL(dimM,R) on the components.

4.2.5 Principal fiber bundles

We can specialize our definition of bundle to define a smooth bundle, which is just a bundle
(E, π,M) where E and M are smooth manifolds and the projection π : E →M is smooth.
Two smooth bundles (E, π,M) and (E′, π′,M ′) are isomorphic if there exist diffeomor-
phisms u, f such that the following diagram commutes

E E′

M M ′

π

u

π′

f

It is said that, roughly speaking, a principal bundle is a bundle whose fibre at each point is
a Lie group. Note that the formal definition is that a principal G-bundle is a bundle which
is isomorphic to a bundle whose fibres are the orbits under the right action of G, which are
themselves isomorphic to G since the action is free.

The frame bundle will be a prototypical example of a principal bundle.
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Example 4.27. a) Let M be a smooth manifold. Consider the space

LpM := {(e1, . . . , edimM ) | e1, . . . , edimM is a basis of TpM} ∼=vec GL(dimM,R).

We know from linear algebra that the bases of a vector space are related to each other
by invertible linear transformations. Hence, we have

LpM ∼=vec GL(dimM,R).

We define the frame bundle of M as

LM :=
∐
p∈M

LpM

with the obvious projection map π : LM →M sending each basis (e1, . . . , edimM ) to
the unique point p ∈ M such that (e1, . . . , edimM ) is a basis of TpM . By proceeding
similarly to the case of the tangent bundle, we can equip LM with a smooth structure
inherited from that of M . We then find

dimLM = dimM + dimTpM = dimM + (dimM)2.

b) We would now like to make LM π−→ M into a principal GL(dimM,R)-bundle. We
define a right GL(dimM,R)-action on LM by

(e1, . . . , edimM ) C g := (ga1ea, . . . , g
a

dimMea),

where gab are the components of the endomorphism g ∈ GL(dimM,R) with respect
to the standard basis on Rn. Note that if (e1, . . . , edimM ) ∈ LpM , we must also have
(e1, . . . , edimM ) C g ∈ LpM . This action is free since

(e1, . . . , edimM ) C g = (e1, . . . , edimM )⇔ (ga1ea, . . . , g
a

dimMea) = (e1, . . . , edimM )

and hence, by linear independence, gab = δab , so g = idRn . Note that since all bases
of each TpM are related by some g ∈ GL(dimM,R), C is also fibre-wise transitive.

c) We now have to show that

LM

M

π
∼=bdl

LM

LM
/

GL(dimM,R)

ρ

i.e. that there exist smooth maps u and f such that the diagram

LM LM

M LM
/

GL(dimM,R)

u

π

u−1

ρ

f

f−1
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commutes. We can simply choose u = u−1 = idLM , while we define f as

f : M → LM
/

GL(dimM,R)

p 7→ GL(dimM,R)(e1,...,edimM ),

where (e1, . . . , edimM ) is some basis of TpM , i.e. (e1, . . . , edimM ) ∈ preimπ({p}). Note
that f is well-defined since every basis of TpM gives rise to the same orbit in the orbit
space LM

/
GL(dimM,R). Moreover, it is injective since

f(p) = f(p′) ⇔ GL(dimM,R)(e1,...,edimM ) = GL(dimM,R)(e′1,...,e
′
dimM ),

which is true only if (e1, . . . , edimM ) and (e′1, . . . , e
′
dimM ) are basis of the same tangent

space, so p = p′. It is clearly surjective since every orbit in LM
/

GL(dimM,R) is the
orbit of some basis of some tangent space TpM at some point p ∈ M . The inverse
map is given explicitly by

f−1 : LM
/

GL(dimM,R)→M

GL(dimM,R)(e1,...,edimM ) 7→ π((e1, . . . , edimM )).

Finally, we have

(ρ ◦ idLM )(e1, . . . , edimM ) = GL(dimM,R)(e1,...,edimM ) = (f ◦ π)(e1, . . . , edimM )

and thus LM π−→M is a principal G-bundle, called the frame bundle of M .

Example 4.28. The existence of a section on the frame bundle LM can be reduced to the
existence of (dimM) non-everywhere vanishing linearly independent vector fields on M .
Since no such vector field exists on even-dimensional spheres, LS2n is always non-trivial.

4.2.6 Associated fiber bundle

An associated fibre bundle is a fibre bundle which is associated (in a precise sense) to a
principal G-bundle. Associated bundles are related to their underlying principal bundles in
a way that models the transformation law for components under a change of basis.

The associated bundle (to (P, π,M), F and B) is the bundle (PF , πF ,M).

Example 4.29. Recall that the frame bundle (LM,π,M) is a principal GL(d,R)-bundle,
where d = dimM , with right G-action C : LM ×G→ LM given by

(e1, . . . , ed) C g := (ga1ea, . . . , g
a
dea).

Let F := Rd (as a smooth manifold) and define a left action

B : GL(d,R)× Rd → Rd

(g, x) 7→ g B x,

where
(g B x)a := gabx

b.
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Then (LMRd , πRd ,Rd) is the associated bundle. In fact, we have a bundle isomorphism

LMRd TM

M M

πRd

u

π

idM

where (TM, π,M) is the tangent bundle of M , and u is defined as

u : LMRd → TM

[(e1, . . . , ed), x] 7→ xaea.

The inverse map u−1 : TM → LMRd works as follows. Given any X ∈ TM , pick any
basis (e1, . . . , ed) of the tangent space at the point π(X) ∈M , i.e. any element of Lπ(X)M .
Decompose X as xaea, with each xa ∈ R, and define

u−1(X) := [(e1, . . . , ed), x].

The map u−1 is well-defined since, while the pair ((e1, . . . , ed), x) ∈ LM×Rd clearly depends
on the choice of basis, the equivalence class

[(e1, . . . , ed), x] ∈ LMRd := (LM × Rd)/∼G

does not. It includes all pairs ((e1, . . . , ed) C g, g−1 B x) for every g ∈ GL(d,R), i.e. every
choice of basis together with the “right” components x ∈ Rd.

Remark 4.30. Even though the associated bundle (LMRd , πRd ,Rd) is isomorphic to the
tangent bundle (TM, π,M), note a subtle difference between the two. On the tangent
bundle, the transformation law for a change of basis and the related transformation law for
components are deduced from the definitions by undergraduate linear algebra.

On the other hand, the transformation laws on LMRd were chosen by us in its definition.
We chose the Lie group GL(d,R), the specific right action C on LM , the space Rd, and the
specific left action on Rd. It just happens that, with these choices, the resulting associated
bundle is isomorphic to the tangent bundle. Of course, we have the freedom to make
different choices and construct bundles which behave very differently from TM .

Example 4.31. Consider the principal GL(d,R)-bundle (LM,π,M) again, with the same
right action as before. This time we define

F := (Rd)×p × (Rd∗)×q := Rd × · · · × Rd︸ ︷︷ ︸
p times

×Rd∗ × · · · × Rd∗︸ ︷︷ ︸
q times

with left GL(d,R)-action B : GL(d,R)× F → F given by

(g B f)
a1···ap

b1···bq := ga1ã1 · · · g
ap
ãp

(g−1)b̃1b1 · · · (g
−1)

b̃q
bq
f
ã1···ãp

b̃1···̃bq
.

Then, the associated bundle (LMF , πF ,M) thus constructed is isomorphic to (T pqM,π,M),
the (p, q)-tensor bundle on M .
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Remark 4.32. Some special cases include the following.

i) If ω = 0, we recover the (p, q)-tensor bundle on M .

ii) If F = R (i.e. p = q = 0), the left action reduces to

(g B f) = (det g−1)ω f,

which is the transformation law for a scalar density of weight ω.

iii) If GL(d,R) is restricted in such a way that we always have (det g−1) = 1, then tensor
densities are indistinguishable from ordinary tensor fields. This is why you probably
haven’t met tensor densities in your special relativity course.

Example 4.33. Recall that if B is a bilinear form on a K-vector space V , the determinant
of B is not independent from the choice of basis. Indeed, if {ea} and {e′b := gabea} are both
basis of V , where g ∈ GL(dimV,K), then

(detB)′ = (det g−1)2 detB.

Once recast in the principal and associated bundle formalism, we find that the determinant
of a bilinear form is a scalar density of weight 2.

4.2.7 Application

Spinors are hard to define, paraphrasing a joke of sir. M. Atiyah: "...only God and maybe
Dirac know what they are...". The principal and associated bundle formalism gives a
geometric interpretation and a way to imagine what a spinor is: namely a spinor is an
element of the spinor field, the spinor field is a sections of an appropriate bundle called the
spin-bundle. The spin-bundle is associated to a suitable bundle called the principal spin
frame bundle. This is in complete analogy with a matter field as section of the tangent
bundle that is associated to the principal frame bundle. To achieve that, we need first to
remember the spin groups as double cover of the special orthogonal groups and construct
a Lie group homomorphism. The definition of a spin frame bundle over an n-dimensional
manifold requires the introduction of a metric, namely Riemannian metric, in order to
define the spin structure (P,φ). φ which is a map from the total space P to the orthogonal
frame bundle OLM, such that the following digram commutes:

P OLM

M

φ

π π∗

and the bundle morphism φ is supposed to be ρ-equivariant as described before. A remark
has to be made for the existence of the spin structure.

Theorem 4.34. A Riemannian (M,g) admits a spin structure if and only if the second
Stiefel-Whitney class vanishes.
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This is a topological invariant, you can always decide whether you can put such a spin
structure on a Riemannian manifold. For special cases:

Theorem 4.35. If the dimension of M is less or equal to 3 and the manifold is both compact
and orientable, then a spin structure always exists.

Example 4.36. In quantum mechanics on a 2-sphere, the spin structure always exists.

Definition. A spinor field is a section of a spin bundle.

Which is not the just defined spin frame bundle.

Definition. A spin bundle is a vector bundle, with typical fiber F associated to the spin
frame bundle by virtue of a linear left action that is a linear representation of spin.

Therefor F is a representation of Spin() and the spin bundle is the associated bundle
to the principal spin frame bundle. In practice, what we mean is that doing something in
the spin frame (P), it has a bearing on the orthogonal frame (OLM). This is what happens
in physics all the time, we rotate the measurement apparatus macroscopically (which is not
spin) say by a 2π rotation in the OLM, however in P we just went from the identity to half
the full angle.

Remark 4.37. In principle we need not to restrict ourselves in the orthogonal bundle, how-
ever it is exactly that bundle that is kept invariant under the action of the special orthogonal
groups.

What if we didn’t take the orthogonal frame bundle? That is we do not ask for a
metric, then we have the total frame bundle which is a principal general linear bundle
and the question is: are there double covering maps? In other words, are there spins
corresponding to the general linear transformations, like there are spins corresponding to
the special orthogonal groups? And the answer is no, there aren’t. Our notion of spinors
comes from an underlying metric, in mathematics tensors are more elementary because
they need just a smooth manifold. On the other end, going from tensor to spin, we already
need a metric geometry underlying in order to even define spin. In physics the opposite
is assumed, because one can construct tensors from spinors, but the misunderstanding
is now clear: we don’t really understand the full frame bundle, but once we restrict the
attention to orthogonal frame bundles we can understand spinors. Therefore if and only if
you are given a Riemannian manifold, that has already a definition of metric, then a spin
is more elementary than a tensor. We have a frame bundle and sections of an associated
line bundle, to define the spin covariant derivative, . Having sections of an associated line
bundle and wanting to construct the spin covariant derivative, as found in general relativity
books we need the concept of equivalence of local sections and equivariant functions on the
principal frame bundle that will be defined in the next sections. In words, the sections of
the associated bundle can be made in a spin(n)-equivariant fiber valued functions of the
spin frame bundle, then push everything down on the manifold by choosing a particular
section on the spin bundle and you get the local version in terms of Yang-Mills fields. In
GR the formula for the spin covariant derivative, is the same construction for the general
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covariant derivatives of sections of associated bundles. The problem reduces to choose a
connection on the principal spin(n) bundle.
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4.3 Connections

In elementary courses on differential geometry or general relativity, the notions of con-
nection, parallel transport and covariant derivative are often confused with one another.
Sometimes, the terms are even used as synonyms, but this is not the way to understand the
different terms. What a connection really is, can be interpreted as just additional structure
on a principal bundle consisting in a “smooth” assignment of a particular vector space at
each point of the base manifold compatible with the right action of the Lie group on the
principal bundle. Such an assignment is, in fact, equivalent to a certain Lie-algebra-valued
one-form on the principal bundle, as we will discuss below. Later, we will see that a connec-
tion on a principal bundle induces a parallel transport map on the principal bundle, which
in turn induces a parallel transport map on any of its associated bundles. If the fibres of
the associated bundle carry a vector space structure, then the parallel transport can be
used to define a covariant derivative on the associated bundle.

Hence the conceptual sequence “connection, parallel transport covariant derivative” is in
decreasing order of generality, and it should be clear that treating these terms as synonyms
will inevitably lead to confusion.

Let (P, π,M) be a principal G-bundle. Recall that every element of A ∈ TeG gives rise
to a left invariant vector field on G which we denoted by XA. However, we will now reserve
this notation for a vector field on P instead. Given A ∈ TeG, we define XA ∈ Γ(TP ) by

XA
p : C∞(P )

∼−→ R
f 7→ [f(p C exp(tA))]′(0),

where the derivative is to be taken with respect to t. We also define the maps

ip : TeG→ TpP

A 7→ XA
p ,

which can be shown to be a Lie algebra homomorphism.
The idea of a connection is to make a choice of how to “connect” the individual points

in “neighbouring” fibres in a principal fibre bundle. The definition formalises the idea that
the assignment of an HpP to each p ∈ P should be “smooth” within each fibre (i) as well
as between different fibres (ii).

Remark 4.38. For each Xp ∈ TpP , both hor(Xp) and ver(Xp) depend on the choice of HpP .

4.3.1 Connection one-forms

Technically, the choice of a horizontal subspace HpP at each p ∈ P providing a connection
is conveniently encoded in the thus induced Lie-algebra-valued one-form

ωp : TpP
∼−→ TeG

Xp 7→ ωp(Xp) := i−1
p (ver(Xp))

Remark 4.39. We have seen how to produce a one-form from a choice of horizontal spaces
(i.e. a connection). The choice of horizontal spaces can be recovered from ω by

HpP = ker(ωp).
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Of course, not every (Lie-algebra-valued) one-form on P is such that ker(ωp) gives a
connection on the principal bundle. What we would now like to do is to study some crucial
properties of ω. We will then elevate these properties to a definition of connection one-
form absent a connection, so that we may re-define the notion of connection in terms of a
connection one-form.

4.3.2 Local representation of a connection one-forms

After understanding how to associate a connection one-form to a connection, i.e. a certain
Lie-algebra-valued one-form to a smooth choice of horizontal spaces on the principal bundle.
We will now study how we can express this connection one-form locally on the base manifold
of the principal bundle.

Recall that a connection one-form on a principal bundle (P, π,M) is a smooth Lie-
algebra-valued one-form, i.e. a smooth map

ω : Γ(TP )
∼−→ TeG

which “behaves like a one-form”, in the sense that it is R-linear and satisfies the Leibniz
rule, and such that, in addition, for all A ∈ TeG, g ∈ G and X ∈ Γ(TP ), we have

i) ω(XA) = A;

ii) ((C g)∗ω)(X) = (Adg−1)∗(ω(X)).

If the pair (u, f) is a principal bundle automorphism of (P, π,M), i.e. if the diagram

P P

P P

M M

u

u

π

CG

π

CG

f

commutes, we should be able to pull a connection one-form ω on P back to another con-
nection one-form u∗ω on P .

Γ(TP ) TeG

Γ(TP )

ω

u
u∗ω

Recall that for a one-form ω : Γ(TN)
∼−→ C∞(N), we defined

Φ∗(ω) : Γ(TM)
∼−→ C∞(M)

X 7→ ω(Φ∗(X)) ◦ φ
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for any diffeomorphism φ : M → N . One might be worried about whether this and similar
definitions apply to Lie-algebra-valued one-forms but, in fact, they do. In our case, even
though ω lands in TeG, its domain is still Γ(TP ) and if u : P → P is a diffeomorphism of
P , then u∗X ∈ Γ(TP ) and so

u∗ω : X 7→ (u∗ω)(X) := ω(u∗(X)) ◦ u

is again a Lie-algebra-valued one-form. Note that we will no longer distinguish notationally
between the push-forward of tangent vectors and of vector fields.

In practice, e.g. for calculational purposes, one may wish to restrict attention to some
open subset U ⊆M . Let σ : U → P be a local section of P , i.e. π ◦ σ = idU .

P

P

U

π

CG

σ

The next definition is so important that is copy and pasted directly from the appendix:

Definition. Given a connection one-form ω on P , such a local section σ induces

i) a Yang-Mills field ωU : Γ(TU)
∼−→ TeG given by

ωU := σ∗ω;

ii) a local trivialisation of the principal bundle P , i.e. a map

h : U ×G→ P

(m, g) 7→ σ(m) C g;

iii) a local representation of ω on U by

h∗ω : Γ(T (U ×G))
∼−→ TeG.

Note that, at each point (m, g) ∈ U ×G, we have

T(m,g)(U ×G) ∼=Lie alg TmU ⊕ TgG.

Remark 4.40. Both the Yang-Mills field ωU and the local representation h∗ω encode the
information carried by ω locally on U . Since h∗ω involves U × G while ωU doesn’t, one
might guess that h∗ω gives a more “accurate” picture of ω on U than the Yang-Mills field.
But in fact, this is not the case. They both contain the same amount of local information
about the connection one-form ω.
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4.3.3 Maurer-Cartan form

Th relation between the Yang-Mills field and the local representation is provided by the
introduction of the Ξg, which is the Maurer-Cartan form.

Remark 4.41. Note that we have represented a generic element of TgG as LAg . This is due
to the following. Recall that the left translation map `g : G→ G is a diffeomorphism of G.
As such, its push-forward at any point is a linear isomorphism. In particular, we have

((`g)∗)e : TeG
∼−→ TgG,

that is, the tangent space at any point g ∈ G can be canonically identified with the tangent
space at the identity. Hence, we can write any element of TgG as

LAg := ((`g)∗)e(A)

for some A ∈ TeG.

Let us consider some specific examples.

Example 4.42. Any chart (U, x) of a smooth manifoldM induces a local section σ : U → LM

of the frame bundle of M by

σ(m) :=

((
∂

∂x1

)
m

, . . . ,

(
∂

∂xdimM

)
m

)
∈ LmM.

Since GL(dimM,R) can be identified with an open subset of R(dimM)2 , we have

Te GL(dimM,R) ∼=Lie alg R(dimM)2 ,

where R(dimM)2 is understood as the algebra of dimM × dimM square matrices, with
bracket induced by matrix multiplication. In fact, this holds for any open subset of a
vector space, when considered as a smooth manifold. A connection one-form

ω : Γ(LM)
∼−→ Te GL(dimM,R)

can thus be given in terms of (dimM)2 functions

ωij : Γ(LM)
∼−→ R, 1 ≤ i, j ≤ dimM.

The associated Yang-Mills field ωU := σ∗ω is, at each point m ∈ U , a Lie-algebra-valued
one-form on the vector space TmU . By using the co-ordinate induced basis and its dual
basis, we can express (ωU )m in terms of components as

(ωU )m = ωUµ (m) (dxµ)m,

where 1 ≤ µ ≤ dimM and

ωUµ (m) := (ωU )m

((
∂

∂xµ

)
m

)
.
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Since (ωU )m : TmU
∼−→ TeG, we have ωUµ : U → TeG. Hence, by employing he same isomor-

phism as above, we can identify each ωUµ (m) with a square dimM × dimM matrix and
define the symbol

Γijµ(m) := (ωU (m))ijµ := (ωUµ (m))ij ,

usually referred to as the Christoffel symbol . The middle term is just an alternative notation
for the right-most side. Note that, even though all three indices i, j, µ run from 1 to dimM ,
the numbers Γijµ(m) do not constitute the components of a (1, 2)-tensor on U . Only the µ
index transforms as a one-form component index, i.e.

((g B ωU (m))ij)µ = (g−1)ν (ωU (m))ijν

for g ∈ GL(dimM,R), while the i, j indices simply label different one-forms, (dimM)2 in
total.

Note that the Maurer-Cartan form appearing in Theorem .107 only depends on the Lie
group (and its Lie algebra), not on the principal bundle P or the restriction U ⊆M . In the
following example, we will go through the explicit calculation of the Maurer-Cartan form
of the Lie group GL(d,R).

4.3.4 The gauge map

In physics, we are often prompted to write down a Yang-Mills field because we have local
information about a connection. We can then try to reconstruct the global connection by
glueing the Yang-Mills fields on several open subsets of our manifold.

P

U1 U2

π π

σ1 σ2

Suppose, for instance, that we have two open subsets U1, U2 ⊆ M and consider the Yang-
Mills fields associated to two local connections σ1, σ2. If ωU1 and ωU2 are both local versions
of a unique connection one-form, then is U1 ∩ U2 6= ∅, the Yang-Mills fields ωU1 and ωU2

should satisfy some compatibility condition on U1 ∩ U2.

Example 4.43. Consider again the frame bundle LM of some manifold M . Let us evaluate
explicitly the pull-back along Ω of the Maurer-Cartan form. Since Ξg : TgG → TeG and
Ω: U1∩U2 → TeG, we have Ω∗Ξg : T (U1∩U2)→ TeG. Let x be a chart map near the point
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m ∈ U1 ∩ U2. We have

((Ω∗Ξg)m)ij

((
∂

∂xµ

)
m

)
= (ΞΩ(m))

i
j

(
Ω∗

(
∂

∂xµ

)
m

)
= (Ω(m)−1)ik(dx̃

k
j)Ω(m)

(
Ω∗

(
∂

∂xµ

)
m

)
= (Ω(m)−1)ik

(
Ω∗

(
∂

∂xµ

)
m

)
(x̃kj)

= (Ω(m)−1)ik

(
∂

∂xµ

)
m

(x̃kj ◦ Ω)

= (Ω(m)−1)ik

(
∂

∂xµ

)
m

(Ω(m))kj .

hence, we can write

((Ω∗Ξg)m)ij = (Ω(m)−1)ik

(
∂

∂xµ

)
m

(Ω(m))kjdx
µ

=: (Ω−1dΩ)ij .

Let us now compute the other summand. Recall that Adg is the map

Adg : G→ G

h 7→ g • h • g−1

and since Adg(e) = e, the push-forward ((Adg)∗)e : TeG
∼−→ TeG is a linear endomorphism

of TeG. Moreover, since here G = GL(d,R) is a matrix Lie group, we have

((Adg)∗A)ij = gikA
k
l(g
−1)lj =: (gAg−1)ij .

Hence, we have

(AdΩ−1(m))∗(ω
U1) = (Ω(m)−1)ik(ω

U1)m)kl(Ω(m))lj

Altogether, we find that the transition rule for the Yang-Mills fields on the intersection of
U1 and U2 is given by

(ωU2)ijµ = (Ω−1)ik(ω
U1)klµΩl

j + (Ω−1)ik∂µ(Ω−1)kj .

As an application, consider the spacial case in which the sections σ1, σ2 are induced by
co-ordinate charts (U1, x) and (U2, y). Then we have

Ωi
j =

∂yi

∂xj
:= ∂j(y

i ◦ x−1) ◦ x

(Ω−1)ij =
∂xi

∂yj
:= ∂j(x

i ◦ y−1) ◦ y

and hence

(ωU2)ijν =
∂yµ

∂xν

(
∂xi

∂yk
(ωU1)klµ

∂yl

∂xj
+
∂xi

∂yk
∂2yk

∂xµ∂xj

)
.

You may recognise this as the transformation law for the Christoffel symbols from general
relativity.
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4.4 Parallel transport

We now come to the second term in the sequence “connection, parallel transport, covariant
derivative”. The idea of parallel transport on a principal bundle hinges on that of horizontal
lift of a curve on the base manifold, which is a lifting to a curve on the principal bundle in
the sense that the projection to the base manifold of this curve gives the curve we started
with. In particular, if the principal bundle is equipped with a connection, we would like to
impose some extra conditions on this lifting, so that it “connects” nearby fibres in a nice
way. We will then consider the same idea on an associated bundle and see how we can
induce a derivative operator if the associated bundle is a vector bundle.

4.4.1 The horizontal lift

Intuitively, a horizontal lift of a curve γ on M is a curve γ↑ on P such that each point
γ↑(λ) ∈ P belongs to the fibre of γ(λ) (condition i), the tangent vectors to the curve γ↑

have no vertical component (condition ii), i.e. they lie entirely in the horizontal spaces at
each point, and finally the projection of the tangent vector to γ↑ at γ↑(λ) coincides with
the tangent vector to the curve γ at π(γ↑(λ)) = γ(λ).

Remark 4.44. Note that the uniqueness in the above definition only stems from the choice of
p0 ∈ preimπ({γ(0)}). A curve on M has several horizontal lifts to a curve on P , but there
is only one such curve going through each point p0 ∈ preimπ({γ(0)}). Clearly, different
horizontal lifts cannot intersect each other.

Our strategy to write down an explicit expression for the horizontal lift through p0 ∈ P
of a curve γ : [0, 1]→M is to proceed in two steps:

i) “Generate” the horizontal lift by starting from some arbitrary curve δ : [0, 1]→ P such
that π ◦ δ = γ by action of a suitable curve g : (0, 1)→ G so that

γ↑(λ) = δ(λ) C g(λ).

The suitable curve g will be the solution to an ordinary differential equation with
initial condition g(0) = g0, where g0 is the unique element in G such that

δ(0) C g0 = p0 ∈ P.

ii) We will explicitly solve (locally) this differential equation for g : [0, 1]→ P by a path-
ordered integral over the local Yang-Mills field.

In order to further massage this ODE,

ġ(λ) = −(ωδ(λ)(Xδ,δ(λ)))g(λ).

let us consider a chart (U, x) on the base manifold M , such that the image of γ is entirely
contained in U . A local section σ : U → P induces

i) a Yang-Mills field ωU ;
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ii) a curve on P by δ := σ ◦ γ.

In fact, since the only condition imposed on δ is that π ◦ δ = γ, choosing a such a curve δ
is equivalent to choosing a local section σ. Note that we have

σ∗(Xγ,γ(λ)) = Xδ,δ(λ),

and hence

ωδ(λ)(Xδ,δ(λ)) = ωδ(λ)(σ∗(Xγ,γ(λ)))

= (σ∗ω)γ(λ)(Xγ,γ(λ))

= (ωU )γ(λ)(Xγ,γ(λ))

= ωUµ (γ(λ))(dxµ)γ(λ)

(
Xν
γ (γ(λ))

(
∂

∂xν

)
γ(λ)

)
= ωUµ (γ(λ))Xν

γ (γ(λ))(dxµ)γ(λ)

((
∂

∂xν

)
γ(λ)

)
= ωUµ (γ(λ))Xν

γ (γ(λ)) δµν

= ωUµ (γ(λ))Xµ
γ (γ(λ)).

Thus, in the special case of a matrix Lie group, the ODE reads

ġ(λ) = −Γµ(γ(λ)) γ̇µ(λ),

where Γµ := ωUµ and γ̇µ(λ) := Xµ
γ (γ(λ)), together with the initial condition g(0) = g0.

Remark 4.45. The parallel transport is, in fact, a bijection between the fibres preimπ({γ(0)})
and preimπ({γ(1)}). It is injective since there is a unique horizontal lift of γ through each
point p ∈ preimπ({γ(0)}), and horizontal lifts through different points do not intersect.
It is surjective since for each q ∈ preimπ({γ(1)}) we can find a p such that q = γ↑p(1) as
follows. Let p̃ ∈ preimπ({γ(0)}). Then γ↑p̃(1) belongs to the same fibre as q and hence there
exists a unique g ∈ G such that q = γ↑p̃(1) C g. Recall that

γ↑p̃(λ) = (σ ◦ γ)(λ) C (P exp(· · · )g0)

where g0 is the unique g0 ∈ G such that p̃ = (σ ◦ γ)(0) C g0. Define p ∈ preimπ({γ(0)}) by

p := p̃ C g = (σ ◦ γ)(0) C (g0 • g).

Then we have

γ↑p(1) = (σ ◦ γ)(1) C (P exp(· · · )g0 • g)

= (σ ◦ γ)(1) C (P exp(· · · )g0) C g

= γ↑p̃(1) C g

= q.

Almost everything that we have done so far transfers with ease to an associated bundle
as remarked in the section of appendix "Horizontal lifts to the associated bundle".
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4.5 Curvature and torsion on principal bundle

Usually, in more elementary treatments of differential geometry or general relativity, cur-
vature and torsion are mentioned together as properties of a covariant derivative over the
tangent or the frame bundle. Since we will soon define the notion of curvature on a general
principal bundle equipped with a connection, one might expect that there be a general
definition of torsion on a principal bundle with a connection. However, this is not the case.
Torsion requires additional structure beyond that induced by a connection. The reason why
curvature and torsion are sometimes presented together is that frame bundles are already
equipped, in a canonical way, with the extra structure required to define torsion.

4.5.1 Covariant exterior derivative and curvature

Since the importance of the subject, definitions and a proposition from the appendix are
required:

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. Let φ be
a k-form (i.e. an anti-symmetric, C∞(P )-multilinear map) with values in some module V .
Then then exterior covariant derivative of φ is

Dφ : Γ(TP )×(k+1) → V

(X1, . . . , Xk+1) 7→ dφ(hor(X1), . . . ,hor(Xk+1)).

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. The cur-
vature of the connection one-form ω is the Lie-algebra-valued 2-form on P

Ω: Γ(TP )× Γ(TP )→ TeG

defined by
Ω := Dω.

For calculation purposes, we would like to make this definition a bit more explicit.

Proposition 4.46. Let ω be a connection one-form and Ω its curvature. Then

Ω = dω + ω ω (?)

with the second term on the right hand side defined as

(ω ω)(X,Y ) := Jω(X), ω(Y )K

where X,Y ∈ Γ(TP ) and the double bracket denotes the Lie bracket on TeG.

Remark 4.47. If G is a matrix Lie group, and hence TeG is an algebra of matrices of the
same size as those of G, then we can write

Ωi
j = dωij + ωik ∧ ωkj .
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We would now like to relate the curvature on a principal bundle to (local) objects
on the base manifold, just like we have done for the connection one-form. Recall that a
connection one-form on a principal G-bundle (P, π,M) is a TeG-valued one-form ω on P .
By using the notation Ω1(P ) ⊗ TeG for the collection (in fact, bundle) of all TeG-valued
one-forms, we have ω ∈ Ω1(P )⊗TeG. If σ ∈ Γ(TU) is a local section on M , we defined the
Yang-Mills field ωU ∈ Ω1(U)⊗ TeG by pulling ω back along σ.

Definition. Let (P, π,M) be a principal G-bundle and let Ω be the curvature associated to
a connection one-form on P . Let σ ∈ Γ(TU) be a local section on M . Then, the two-form

Riem ≡ F := σ∗Ω ∈ Ω2(U)⊗ TeG

is called the Yang-Mills field strength.

Remark 4.48. Observe that the equation Ω = dω + ω ω on P immediately gives

σ∗Ω = σ∗(dω + ω ω)

= σ∗(dω) + σ∗(ω ω)

= d(σ∗ω) + σ∗ω σ∗ω.

Since Riem is a two-form, we can write

Riemµν = (dωU )µν + ωUµ ωUν .

In the case of a matrix Lie group, by writing Γijµ := (ωU )ijµ, we can further express this
in components as

Riemi
jµν = ∂νΓijµ − ∂µΓijν + ΓikµΓkjν − ΓikνΓkjµ

from which we immediately observe that Riem is symmetric in the last two indices, i.e.

Riemi
j[µν] = 0.

Theorem 4.49 (First Bianchi identity). Let Ω be the curvature two-form associated to a
connection one-form ω on a principal bundle. Then

DΩ = 0.

Remark 4.50. Note that since Ω = Dω, Bianchi’s identity can be rewritten as D2Ω = 0.
However, unlike the exterior derivative d, the covariant exterior derivative does not satisfy
D2 = 0 in general.

4.5.2 Torsion

As discussed before, to define torsion, additional structure is required. A solder form
provides an identification of V with each tangent space of M .

Remark 4.51. We can now see that the “extra structure” required to define the torsion is a
choice of solder form. The following example shows that there is a canonical choice of such
a form on any frame bundle bundle.
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Example 4.52. Consider the frame bundle (LM,π,M) and define

θ : Γ(T (LM))→ RdimM

X 7→ (u−1
π(X) ◦ π∗)(X)

where for each e := (e1, . . . , edimM ) ∈ LM , ue is defined as

ue : RdimM ∼−→ Tπ(e)M

(x1, . . . , xdimM ) 7→ xiei.

To describe the inverse map u−1
e explicitly, note that to every frame (e1, . . . , edimM ) ∈ LM ,

there exists a co-frame (f1, . . . , fdimM ) ∈ L∗M such that

u−1
e : Tπ(e)M

∼−→ RdimM

Z 7→ (f1(Z), . . . , fdimM (Z)).

Now we are ready to report the definition of torsion from the appendix:

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω and let
θ ∈ Ω1(P )⊗ V be a solder form on P . Then

Θ := Dθ ∈ Ω2(P )⊗ V

is the torsion of ω with respect to θ.

We would like to have a similar formula for Θ as we had for Ω. However, since Θ and
θ are both V -valued but ω is TeG-valued, the term ω θ would be meaningless. What we
have, instead, is the following

Θ = dθ + ω θ,

where the half-double wedge symbol intuitively indicates that we let ω act on θ. More
precisely, in the case of a matrix Lie group, recalling that dimG = dimTeG = dimV , we
have

Θi = dθi + ωik θk.

Remark 4.53. Like connection one-forms and curvatures two-forms, a torsion two-form Θ

can also be pulled back to the base manifold along a local section σ as T := σ∗Θ. In fact,
this is the torsion that one typically meets in general relativity.
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4.6 Covariant derivatives

Recall that if F is a vector space and (P, π,M) a principal G-bundle equipped with a
connection, we can use the parallel transport on the associated bundle (PF , πF ,M) and the
vector space structure of F to define the differential quotient of a local section σ : U → PF
along an integral curve of some tangent vector X ∈ TU . This then allowed us to define the
covariant derivative of σ at the point π(X) ∈ U in the direction of X ∈ TU .

This approach to the concept of covariant derivative is very intuitive and geometric,
but it is a disaster from a technical point of view as it is quite difficult to implement. There
is, in fact, a neater approach to covariant differentiation.

There is an equivalence of local sections of associated bundles and equivariant functions
on principal bundles.

In other words, We can now specialize to the case where F is a vector space, and hence
we can require the left action GB : F

∼−→ F to be linear actions on associated vector fibre
bundles.

4.6.1 Construction of covariant derivatives

We now wish to construct a covariant derivative, i.e. an “operator” ∇ such that for any
local section σ : U ⊆M → PF and any X ∈ TmU with m ∈ U , we have that ∇Xσ is again
a local section U → PF and

i) ∇fX+Y σ = f∇Xσ +∇Y σ

ii) ∇X(σ + τ) = ∇Xσ +∇Xτ

iii) ∇Xfσ = X(f)σ + f∇Xσ

for any sections σ, τ : U → PF , any f ∈ C∞(U), and any X,Y ∈ TmU .
These (together with ∇Xf := X(f)) are usually presented as the defining properties

of the covariant derivative in more elementary treatments.
Recall that functions are a special case of forms, namely the 0-forms, and hence the

exterior covariant derivative a function φ : P → F is

Dφ := dφ ◦ hor .

Proposition 4.54. Let φ : P → F be G-equivariant and let X ∈ TpP . Then

Dφ(X) = dφ(X) + ω(X) B φ

Hence, it is clear from this proposition that Dφ(X), which we can also write as DXφ, is
C∞(P )-linear in the X-slot, additive in the φ-slot and satisfies property iii) above. However,
it also clearly not a covariant derivative since X ∈ TP rather than X ∈ TM and φ is a
G-equivariant function P → F rather than a local section o (PF , πF ,M).

We can obtain a covariant derivative from D by introducing a local trivialization on
the bundle (P, π,M). Indeed, let s : U ⊆ M → P be a local section. Then, we can pull
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back the following objects

φ : P → F  s∗φ := φ ◦ s : U → PF

ω ∈ Ω1(M)⊗ TeG  ωU := s∗ω ∈ Ω1(U)⊗ TeG
Dφ ∈ Ω1(M)⊗ F  s∗(Dφ) ∈ Ω1(U)⊗ F.

It is, in fact, for this last object that we will be able to define the covariant derivative.
Let X ∈ TU . Then

(s∗Dφ)(X) = s∗(dφ+ ω B φ)(X)

= s∗(dφ)(X) + s∗(ω B φ)(X)

= d(s∗φ)(X) + s∗(ω)(X) B s∗φ

= dσ(X) + ωU (X) B σ

where we renamed s∗φ =: σ. In summary, we can write

∇Xσ = dσ(X) + ωU (X) B σ

One can check that this satisfies all the properties that we wanted a covariant derivative to
satisfy. Of course, we should note that this is a local definition.

Remark 4.55. Observe that the definition of covariant derivative depends on two choices
which can be made quite independently of each other, namely, the choice of connection
one-form ω (which determines ωU ) and the choice of linear left action B on F .

4.6.2 Application

Looking at quantum mechanics in curved space we may forget the basic ideas found in
books and start from a differential geometric prospective. Locally what we know about
QM must be preserved and we shall not modify those definitions, but we will start with the
following question: what if the wave function is considered as a section of a complex valued
vector bundle over Rd? For a 1-dim line, we can say that at every point there exists a fiber,
that is isomorphic to some complex vector space. Locally the wave function Ψ is just a
section of the bundle total space E. The wave functions are locally sections from Rd to C.
If we consider now the bundle E as being an associated bundle then the principal bundle of
interest if we are dealing with general changes of coordinates, is the frame bundle, with a
choice of a linear left action. Then an arbitrary change of coordinates on the base manifold,
will induce a corresponding change in the coordinate induced frame. The objective is to
see how changing coordinates gives a change in the frames. If E is the associated bundle
to the frame bundle LM over Rd, then it is possible to establish on the frame bundle a
connection. If you have a connection, you can define a covariant derivative on sections
of any associated bundle. Therefore a covariant derivative acting. So saying that Ψ is a
section of this associated bundle E, with fiber C, is the transition to saying Ψ is a complex
valued function, but on the total space of the principal bundle. Since we are on the principle
bundle we can use there the covariant exterior derivative of Ψ, DΨ = Ω. The Ω acts from
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the left of Ψ, the left action of the GL(d,R) group, that I need to establish on the fibers in
order to make this an associated bundle.

The idea is to make use of the definition of covariant derivative, modify the definition:

DΨ(X) = dΨ(X) + ω(X) B Ψ

The partial derivative alone supposes there is a complex valued function, but since we
defined it to be a section on a bundle, we have extra terms coming from the definition
of covariant derivative. This is what will make quantum mechanics on curved space in
2-dimension possible, even if different systems from the Cartesian are used. Defining the
self-adjoint momentum operator with the notion of covariant derivative on a section of an
associated bundle as, Pα = −i∇α. To remind the reader, When a covariant derivative acts
on a function, it acts exactly as a partial derivative, let X be a vector in the base space,
then ∇Xf = Xf . When it acts on a section of a bundle ∇ασ = ∂ασ + ωασ, it carries the
extra structure needed.
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Conclusion

In the first chapter we discussed few key players in the development of the first field theory
up until its generalization to a non-Abelian gauge theory. In chapter two starting with
an Abelian theory we showed the relation between the gauge degree of freedom in EM
to be related with a local phase degree of freedom in QM. Furthermore we discussed two
fundamental relations between Mathematics and Physics, the mathematical concept of a
connection 1-form and curvature 2-form with the physical counter parts of vector potential
and field strength tensor, respectively. In chapter three we briefly touched upon the non-
Abelian case highlighting the common futures with the Abelian counter part and account
for the richer structure. In chapter four we started with a basic review of topological
manifolds, bundles, product bundles, fiber bundles and principal fiber bundles. According
to James OwenWeatherall [10], one might describe general relativity as the theory according
to which spacetime is curved, where the curvature depends on the distribution of energy
and momentum, with gravitational effects as manifestation of this spacetime curvature. If
one would follow Maxwell though, then it would be necessary to define the curvature of
spacetime as the result of a pull-back to the base manifold of the covariant exterior derivative
acting on a connection 1-form. At the same level of description, the picture of Yang-
Mills theory that one ends up with, is that the matter in the universe, (electrons, quarks,
neutrinos,...) seem to have degrees of freedom at each point that are well-represented by
elements of a vector space. Taken together, the spaces of local degrees of freedom form a
vector bundle over spacetime, sections of which are (generalized) "matter fields". Likewise,
matter fields may be associated with other generalized fields on spacetime, again construed
as sections of vector bundles, representing properties matter may have, such as velocity,
electromagnetic charge, color charge, isospin, etc. The reality is much more subtle and
even the definition of field fails and a generalization of the notion of vector space over a
field is needed by introducing modules over rings. Mathematics, just like Physics, is not
enough by itself. A true revolution will happen as soon as a genuine marriage between the
two disciplines will be achieved and both will be able to benefit from the result. Hilbert
proposed to unify Mathematics, that dream hasn’t been realized yet and a unification of
Physics is even farther from happening. A century has passed and more points of contact
have been found, but for the author progress will involve a coordinated motion in parallel
of both disciplines. One will not stand on its own without the aid of the other. An apology
to the reader is due, for using so many words instead of equations, but exiting a bachelor
in physics the author feels like Faraday must have felt: "...I am unfortunate in a want
to mathematical knowledge and power of entering with facility any abstract reasoning. I
am obliged to feel my way by facts placed closely together..." The hope is that through a
careful review of the basic assumptions on what we mean by space, time and spin, their
structures and their representatives, some previously thought certainties, can be singled
out and understood more broadly. To keep the analogy going, and by apologizing now
to Faraday for even imagining to be like him, the author feels that a possible path would
be to find the new Thomson that has selected the key mathematical concept and try to
be a new Maxwell, that can put words into equations. To end, a quote from Hermann
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Weyl about the orthogonal transformations as automorphisms of Euclidean vector spaces:
"...only with the spinors do we strike that level in the theory of its representations on which
Euclid himself, flourishing ruler and compass, so deftly moves in the realm of geometric
figures. In some way Euclid’s geometry must be deeply connected with the existence of the
spin representation."

– 56 –



Appendices

A Topological manifolds and bundles

A.1 Topological manifolds

Definition. A paracompact, Hausdorff, topolog ical space (M,O) is called a d-dimensional
(topological) manifold if for every point p ∈ M there exist a neighbourhood U(p) and a
homeomorphism x : U(p)→ x(U(p)) ⊆ Rd. We also write dimM = d.

Intuitively, a d-dimensional manifold is a topological space which locally (i.e. around
each point) looks like Rd. Note that, strictly speaking, what we have just defined are real
topological manifolds. We could define complex topological manifolds as well, simply by
requiring that the map x be a homeomorphism onto an open subset of Cd.

Proposition .56. Let M be a d-dimensional manifold and let U, V ⊆ M be open, with
U ∩ V 6= ∅. If x and y are two homeomorphisms

x : U → x(U) ⊆ Rd and y : V → y(V ) ⊆ Rd
′
,

then d = d′.

This ensures that the concept of dimension is indeed well-defined, i.e. it is the same at
every point, at least on each connected component of the manifold.

Definition. Let (M,O) be a topological manifold and let N ⊆M . Then (N,O|N ) is called
a submanifold of (M,O) if it is a manifold in its own right.

Definition. Let (M,OM ) and (N,ON ) be topological manifolds of dimension m and n,
respectively. Then, (M × N,OM×N ) is a topological manifold of dimension m + n called
the product manifold .

Example .57. We have T 2 = S1 × S1 not just as topological spaces, but as topological
manifolds as well. This is a special case of the n-torus:

Tn := S1 × S1 × · · · × S1︸ ︷︷ ︸
n times

,

which is an n-dimensional manifold.

A.2 Bundles

Definition. A bundle (of topological manifolds) is a triple (E, π,M) where E and M are
topological manifolds called the total space and the base space respectively, and π is a
continuous, surjective map π : E →M called the projection map.

We will often denote the bundle (E, π,M) by E π−→M .

Definition. Let E π−→ M be a bundle and let p ∈ M . Then, Fp := preimπ({p}) is called
the fibre at the point p.
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Fp
E

p ∈M

M

Intuitively, the fibre at the point p ∈ M is a set of points in E (represented below as
a line) attached to the point p. The projection map sends all the points in the fibre Fp to
the point p.

Definition. Let E π−→M be a bundle and let F be a manifold. Then, E π−→M is called a
fibre bundle, with (typical) fibre F , if:

∀ p ∈M : preimπ({p}) ∼=top F.

A fibre bundle is often represented diagrammatically as:

F E

M

π

Definition. Let E π−→M be a bundle. A map σ : M → E is called a (cross-)section of the
bundle if π ◦ σ = idM .

Fp

p ∈M

π
σ

M

σ(p)
E

Definition. A sub-bundle of a bundle (E, π,M) is a triple (E′, π′,M ′) where E′ ⊆ E and
M ′ ⊆M are submanifolds and π′ := π|E′ .
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Definition. Let (E, π,M) be a bundle and let N ⊆ M be a submanifold. The restricted
bundle (to N) is the triple (E, π′, N) where:

π′ := π|preimπ(N)

Definition. Let E π−→ M and E′ π′−−→ M ′ be bundles and let u : E → E′ and v : M → M ′

be maps. Then (u, v) is called a bundle morphism if the following diagram commutes:

E E′

M M ′

u

π π′

v

i.e. if π′ ◦ u = v ◦ π.

If (u, v) and (u, v′) are both bundle morphisms, then v = v′. That is, given u, if there
exists v such that (u, v) is a bundle morphism, then v is unique.

Definition. Two bundles E π−→ M and E′ π′−−→ M ′ are said to be isomorphic (as bundles)
if there exist bundle morphisms (u, v) and (u−1, v−1) satisfying:

E E′

M M ′

u

π

u−1

π′

v

v−1

Such a (u, v) is called a bundle isomorphism and we write E π−→M ∼=bdl E
′ π′−−→M ′.

Definition. A bundle E π−→ M is said to be locally isomorphic (as a bundle) to a bundle
E′

π′−−→ M ′ if for all p ∈ M there exists a neighbourhood U(p) such that the restricted
bundle:

preimπ(U(p))
π|preimπ(U(p))−−−−−−−−−→ U(p)

is isomorphic to the bundle E′ π′−−→M ′.

Definition. A bundle E π−→M is said to be:

i) trivial if it is isomorphic to a product bundle;

ii) locally trivial if it is locally isomorphic to a product bundle.

Definition. Let E π−→ M be a bundle and let f : M ′ → M be a map from some manifold
M ′. The pull-back bundle of E π−→M induced by f is defined as E′ π′−−→M ′, where:

E′ := {(m′, e) ∈M ′ × E | f(m′) = π(e)}

and π′(m′, e) := m′.
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If E′ π′−−→ M ′ is the pull-back bundle of E π−→ M induced by f , then one can easily
construct a bundle morphism by defining:

u : E′ → E

(m′, e) 7→ e

This corresponds to the diagram:

E′ E

M ′ M

π′

u

π

f

Remark .58. Sections on a bundle pull back to the pull-back bundle. Indeed, let E′ π′−−→M ′

be the pull-back bundle of E π−→M induced by f .

E′ E

M ′ M

π′ π
σ◦f

σ′

f

σ

If σ is a section of E π−→M , then σ ◦ f determines a map from M ′ to E which sends each
m′ ∈M ′ to σ(f(m′)) ∈ E. However, since σ is a section, we have:

π(σ(f(m′)) = (π ◦ σ ◦ f)(m′) = (idM ◦f)(m′) = f(m′)

and hence (m′, (σ ◦ f)(m′)) ∈ E′ by definition of E′. Moreover:

π′(m′, (σ ◦ f)(m′)) = m′

and hence the map:

σ′ : M ′ → E′

m′ 7→ (m′, (σ ◦ f)(m′))

satisfies π′ ◦ σ′ = idM ′ and it is thus a section on the pull-back bundle E′ π′−−→M ′.

A.3 Viewing manifolds from atlases

Definition. Let (M,O) be a d-dimensional manifold. Then, a pair (U, x) where U ∈ O
and x : U → x(U) ⊆ Rd is a homeomorphism, is said to be a chart of the manifold.

The component functions (or maps) of x : U → x(U) ⊆ Rd are the maps:

xi : U → R
p 7→ proji(x(p))

for 1 ≤ i ≤ d, where proji(x(p)) is the i-th component of x(p) ∈ Rd. The xi(p) are called
the co-ordinates of the point p ∈ U with respect to the chart (U, x).
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Definition. An atlas of a manifold M is a collection A := {(Uα, xα) | α ∈ A} of charts
such that: ⋃

α∈A
Uα = M.

Definition. Two charts (U, x) and (V, y) are said to be C0-compatible if either U ∩ V = ∅
or the map:

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )

is continuous.

Note that y ◦ x−1 is a map from a subset of Rd to a subset of Rd.

U ∩ V ⊆M

x(U ∩ V ) ⊆ Rd y(U ∩ V ) ⊆ Rd

x y

y◦x−1

Since the maps x and y are homeomorphisms, the composition map y ◦ x−1 is also a
homeomorphism and hence continuous. Therefore, any two charts on a topological manifold
are C0-compatible. This definition my thus seem redundant since it applies to every pair of
charts. However, it is just a “warm up” since we will later refine this definition and define
the differentiability of maps on a manifold in terms of Ck-compatibility of charts.

Remark .59. The map y ◦x−1 (and its inverse x◦ y−1) is called the co-ordinate change map
or chart transition map.

Definition. A C0-atlas of a manifold is an atlas of pairwise C0-compatible charts.

Note that any atlas is also a C0-atlas.

Definition. A C0-atlas A is said to be a maximal atlas if for every (U, x) ∈ A , we have
(V, y) ∈ A for all (V, y) charts that are C0-compatible with (U, x).

Example .60. Not every C0-atlas is a maximal atlas. Indeed, consider (R,Ostd) and the atlas
A := (R, idR). Then A is not maximal since ((0, 1), idR) is a chart which is C0-compatible
with (R, idR) but ((0, 1), idR) /∈ A .

We can now look at “objects on” topological manifolds from two points of view. For
instance, consider a curve on a d-dimensional manifold M , i.e. a map γ : R→M . We now
ask whether this curve is continuous, as it should be if models the trajectory of a particle
on the “physical space” M .

A first answer is that γ : R→M is continuous if it is continuous as a map between the
topological spaces R and M .

However, the answer that may be more familiar to you from undergraduate physics is
the following. We consider only a portion (open subset U) of the physical space M and,
instead of studying the map γ : preimγ(U)→ U directly, we study the map:

x ◦ γ : preimγ(U)→ x(U) ⊆ Rd,
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where (U, x) is a chart of M . More likely, you would be checking the continuity of
the co-ordinate maps xi ◦ γ, which would then imply the continuity of the “real” curve
γ : preimγ(U)→ U (real, as opposed to its co-ordinate representation).

y(U) ⊆ Rd

preimγ(U) ⊆ R U ⊆M

x(U) ⊆ Rd

γ

x◦γ

y◦γ

x

y

y◦x−1

At some point you may wish to use a different “co-ordinate system” to answer a different
question. In this case, you would chose a different chart (U, y) and then study the map y ◦γ
or its co-ordinate maps. Notice however that some results (e.g. the continuity of γ) obtained
in the previous chart (U, x) can be immediately “transported” to the new chart (U, y) via the
chart transition map y ◦ x−1. Moreover, the map y ◦ x−1 allows us to, intuitively speaking,
forget about the inner structure (i.e. U and the maps γ, x and x) which, in a sense, is the
real world, and only consider preimγ(U) ⊆ R and x(U), y(U) ⊆ Rd together with the maps
between them, which is our representation of the real world.
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B Construction of the tangent bundle

B.1 Cotangent spaces and the differential

Since the tangent space is a vector space, we can do all the constructions we saw previously
in the abstract vector space setting.

Definition. Let M be a manifold and p ∈M . The cotangent space to M at p is

T ∗pM := (TpM)∗.

Since dimTpM is finite, we have TpM ∼=vec T
∗
pM . If {

(
∂
∂xa

)
p
} is the basis of TpM

induced by some chart (U, x), then the dual basis is denoted as {(dxa)p}. We have, by
definition

(dxa)p

((
∂

∂xb

)
p

)
= δab .

Once we have the cotangent space, we can define the tensor spaces.

Definition. Let M be a manifold and p ∈M . The tensor space (T rs )pM is defined as

(T rs )pM := T rs (TpM) = TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r copies

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s copies

.

Definition. Let M and N be manifolds and let φ : M → N be smooth. The differential
(or derivative) of φ at p ∈M is the linear map

dpφ : TpM
∼−→ Tφ(p)N

X 7→ dpφ (X)

where dpφ (X) is the tangent vector to N at φ(p)

dpφ (X) : C∞(N)
∼−→ R

g 7→ (dpφ (X))(g) := X(g ◦ φ).

If this definition looks confusing, it is worth it to pause and think about what it is
saying. Intuitively, if φ takes us fromM to N , then dpφ takes us from TpM to Tφ(p)N . The
way in which it does so, is the following.

M N C∞(M) C∞(N)

R R

φ

g◦φ
g X

−◦φ

dpφ (X)

Given X ∈ TpM , we want to construct dpφ (X) ∈ Tφ(p)N , i.e. a derivation on N at f(p).
Derivations act on functions. So, given g : N → R, we want to construct a real number
by using φ and X. There is really only one way to do is. If we precompose g with φ, we
obtain g ◦ φ : M → R, which is an element of C∞(M). We can then happily apply X to
this function to obtain a real number. You should check that dpφ (X) is indeed a tangent
vector to N .
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Remark .61. Note that, to be careful, we should replace C∞(M) and C∞(N) above with
C∞(U) and C∞(V ), where U ⊆M and V ⊆ N are open and contain p and φ(p), respectively.

Example .62. If M = Rd and N = Rd′ , then the differential of f : Rd → Rd′ at p ∈ Rd

dpf : TpRd ∼=vec Rd → Tf(p)Rd
′ ∼=vec Rd

′

is none other than the Jacobian of f at p.

A special case of the differential is the gradient of a function in C∞(M).

Definition. Let M be a manifold and let f : M → R be smooth. The gradient of f at
p ∈M is the covector

dpf : TpM
∼−→ Tf(p)R ∼=vec R

X 7→ dpf(X) := X(f).

In fact, we can define the gradient operator at p ∈M as the R-linear map

dp : C∞(U)
∼−→ T ∗pM

f 7→ dpf,

with p ∈ U ⊆M .

Remark .63. Note that, by writing dpf(X) := X(f), we have committed a slight (but
nonetheless real) abuse of notation. Since dpf(X) ∈ Tf(p)R, it takes in a function and
return a real number, but X(f) is already a real number! This is due to the fact that we
have implicitly employed the isomorphism

ιd : TpRd → Rd

X 7→ (X(proj1), . . . , X(projd)),

which, when d = 1, reads

ι1 : TpR→ R
X 7→ X(idR).

In our case, we have

dpf(X) := X(− ◦ f) 7→ X(idR ◦f) = X(f).

This notwithstanding, the best way to think of dpf is as a covector, i.e. dpf takes in a
tangent vector X and returns the real number X(f), in a linear fashion.

Recall that if (U, x) is a chart onM , then the co-ordinate maps xa : U → x(U) ⊆ RdimM

are smooth functions on U . We can thus apply the gradient operator dp (with p ∈ U) to
each of them to obtain (dimM)-many elements of T ∗pM .

Proposition .64. Let (U, x) be a chart on M , with p ∈ U . The set B = {dpxa | 1 ≤ a ≤
dimM} forms a basis of T ∗pM .
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Proof. We already know that T ∗pM = dimM , since it is the dual space to TpM . As
|B| = dimM by construction, it suffices to show that it is linearly independent. Suppose
that

λa dpx
a = 0,

for some λa ∈ R. Applying the left hand side to the basis element
(
∂
∂xb

)
p
yields

λa dpx
a

((
∂

∂xb

)
p

)
= λa

(
∂

∂xb

)
p

(xa) (definition of dpx
a)

= λa ∂b(x
a ◦ x−1)(x(p)) (definition of

(
∂
∂xb

)
p
)

= λa ∂b(proja)(x(p))

= λa δ
a
b

= λb.

Therefore, B is linearly independent and hence a basis of T ∗pM . Moreover, since we have
shown that

dpx
a

((
∂

∂xb

)
p

)
= δab ,

this basis is, in fact, the dual basis to {
(
∂
∂xa

)
p
}.

Remark .65. Note a slight subtlety. Given a chart (U, x) and the induced basis {
(
∂
∂xa

)
p
}

of TpM , the dual basis to {
(
∂
∂xa

)
p
} exists simply by virtue of T ∗pM being the dual space to

TpM . What we have shown above is that the elements of this dual basis are given explicitly
by the gradients of the co-ordinate maps of (U, x). In our notation, we have

(dxa)p = dpx
a, 1 ≤ a ≤ dimM.

B.2 Push-forward and pull-back

The push-forward of a smooth map φ : M → N at p ∈ M is just another name for the
differential of φ at p. We give the definition again in order to establish the new notation.

Definition. Let φ : M → N be a smooth map between smooth manifolds. The push-
forward of φ at p ∈M is the linear map:

(φ∗)p : TpM
∼−→ Tφ(p)N

X 7→ (φ∗)p(X) := X(− ◦ φ).

If γ : R → M is a smooth curve on M and φ : M → N is smooth, then φ ◦ γ : R → N

is a smooth curve on N .

Proposition .66. Let φ : M → N be smooth. The tangent vector Xγ,p ∈ TpM is pushed
forward to the tangent vector Xφ◦γ,φ(p) ∈ Tφ(p)N , i.e.

(φ∗)p(Xγ,p) = Xφ◦γ,φ(p).
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Proof. Let f ∈ C∞(V ), with (V, x) a chart on N and φ(p) ∈ V . By applying the definitions,
we have

(φ∗)p(Xγ,p)(f) = (Xγ,p)(f ◦ φ) (definition of (φ∗)p)

= ((f ◦ φ) ◦ γ)′(0) (definition of Xγ,p)

= (f ◦ (φ ◦ γ))′(0) (associativity of ◦)
= Xφ◦γ,φ(p)(f) (definition of Xφ◦γ,φ(p))

Since f was arbitrary, we have (φ∗)p(Xγ,p) = Xφ◦γ,φ(p).

Related to the push-forward, there is the notion of pull-back of a smooth map.

Definition. Let φ : M → N be a smooth map between smooth manifolds. The pull-back
of φ at p ∈M is the linear map:

(φ∗)p : T ∗φ(p)N
∼−→ T ∗pM

ω 7→ (φ∗)p(ω),

where (φ∗)p(ω) is defined as

(φ∗)p(ω) : TpM
∼−→ R

X 7→ ω((φ∗)p(X)),

In words, if ω is a covector on N , its pull-back (φ∗)p(ω) is a covector on M . It acts
on tangent vectors on M by first pushing them forward to tangent vectors on N , and then
applying ω to them to produce a real number.

Remark .67. If you don’t see it immediately, then you should spend some time proving that
all the maps that we have defined so far and claimed to be linear are, in fact, linear.

Remark .68. We have seen that, given a smooth φ : M → N , we can push a vectorX ∈ TpM
forward to a vector (φ∗)p(X) ∈ Tφ(p)N , and pull a covector ω ∈ T ∗φ(p)N back to a covector
(φ∗)p(ω) ∈ T ∗pM .

C∞(M) C∞(N) TpM Tφ(p)N

R R

X

−◦φ

(φ∗)p(X)

(φ∗)p

(φ∗)p(ω)
ω

However, if φ : M → N is a diffeomorphism, then we can also pull a vector Y ∈ Tφ(p)N

back to a vector (φ∗)p(Y ) ∈ TpM , and push a covector η ∈ T ∗pM forward to a covector
(φ∗)p(η) ∈ T ∗φ(p)N , by using φ−1 as follows:

(φ∗)p(Y ) := ((φ−1)∗)φ(p)(Y )

(φ∗)p(η) := ((φ−1)∗)φ(p)(η).
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C∞(M) C∞(N) TpM Tφ(p)N

R R

−◦φ−1

(φ∗)p(Y )
Y η

((φ−1)∗)φ(p)

(φ∗)p(η)

This is only possible if φ is a diffeomorphism. In general, you should keep in mind that

Vectors are pushed forward,
covectors are pulled back.

Remark .69. Given a smooth map φ : M → N , if f ∈ C∞(N), then f ◦ φ is often called the
pull-back of f along φ. Similarly, if γ is a curve on M , then φ◦γ is called the push-forward
of γ along φ. For example, we can say that

• the push-forward of a tangent vector acting on a function is the tangent vector acting
on the pull-back of the function;

• the push-forward of a tangent vector to a curve is the tangent vector to the push-
forward of the curve.

B.3 Immersions and embeddings

We will now consider the question of under which circumstances a smooth manifold can “sit”
in Rd, for some d ∈ N. There are, in fact, two notions of sitting inside another manifold,
called immersion and embedding.

Definition. A smooth map φ : M → N is said to be an immersion of M into N if the
derivative

dpφ ≡ (φ∗)p : TpM
∼−→ Tφ(p)N

is injective, for all p ∈M . The manifold M is said to be an immersed submanifold of N .

From the theory of linear algebra, we immediately deduce that, for φ : M → N to be an
immersion, we must have dimM ≤ dimN . A closely related notion is that of a submersion,
where we require each (φ∗)p to be surjective, and thus we must have dimM ≥ dimN .
However, we will not need this here.

Example .70. Consider the map φ : S1 → R2 whose image is reproduced below.

ϕ(p)
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The map φ is not injective, i.e. there are p, q ∈ S1, with p 6= q and φ(p) = φ(q). Of
course, this means that Tφ(p)R2 = Tφ(q)R2. However, the maps (φ∗)p and (φ∗)q are both
injective, with their images being represented by the blue and red arrows, respectively.
Hence, the map φ is immersion.

Definition. A smooth map φ : M → N is said to be a (smooth) embedding of M into N if

• φ : M → N is an immersion;

• M ∼=top φ(M) ⊆ N , where φ(M) carries the subset topology inherited from N .

The manifold M is said to be an embedded submanifold of N .

Remark .71. If a continuous map between topological spaces satisfies the second condi-
tion above, then it is called a topological embedding. Therefore, a smooth embedding is a
topological embedding which is also an immersion (as opposed to simply being a smooth
topological embedding).

In the early days of differential geometry there were two approaches to study manifolds.
One was the extrinsic view, within which manifolds are defined as special subsets of Rd,
and the other was the intrinsic view, which is the view that we have adopted here.

Whitney’s theorem, which we will state without proof, states that these two approaches
are, in fact, equivalent.

Theorem .72 (Whitney). Any smooth manifold M can be

• embedded in R2 dimM ;

• immersed in R2 dimM−1.

Example .73. The Klein bottle can be embedded in R4 but not in R3. It can, however, be
immersed in R3.

What we have presented above is referred to as the strong version of Whitney’s theorem.
There is a weak version as well, but there are also even stronger versions of this result, such
as the following.

Theorem .74. Any smooth manifold can be immersed in R2 dimM−a(dimM), where a(n) is
the number of 1s in a binary expansion of n ∈ N.

Example .75. If dimM = 3, then as

310 = (1× 21 + 1× 20)10 = 112,

we have a(dimM) = 2, and thus every 3-dimensional manifold can be immersed into R4.
Note that even the strong version of Whitney’s theorem only tells us that we can immerse
M into R5.
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B.4 The tangent bundle

Definition. Given a smooth manifold M , the tangent bundle of M is the disjoint union of
all the tangent spaces to M , i.e.

TM :=
∐
p∈M

TpM,

equipped with the canonical projection map

π : TM →M

X 7→ p,

where p is the unique p ∈M such that X ∈ TpM .

We now need to equip TM with the structure of a smooth manifold. We can achieve
this by constructing a smooth atlas for TM from a smooth atlas on M , as follows.

Let AM be a smooth atlas on M and let (U, x) ∈ AM . If X ∈ preimπ(U) ⊆ TM , then
X ∈ Tπ(X)M , by definition of π. Moreover, since π(X) ∈ U , we can expand X in terms of
the basis induced by the chart (U, x):

X = Xa

(
∂

∂xa

)
π(X)

,

where X1, . . . , XdimM ∈ R. We can then define the map

ξ : preimπ(U)→ x(U)× RdimM ∼=set R2 dimM

X 7→ (x(π(X)), X1, . . . , XdimM ).

Assuming that TM is equipped with a suitable topology, for instance the initial topol-
ogy (i.e. the coarsest topology on TM that makes π continuous), we claim that the pair
(preimπ(U), ξ) is a chart on TM and

ATM := {(preimπ(U), ξ) | (U, x) ∈ AM}

is a smooth atlas on TM . Note that, from its definition, it is clear that ξ is a bijection. We
will not show that (preimπ(U), ξ) is a chart here, but we will show that ATM is a smooth
atlas.

Proposition .76. Any two charts (preimπ(U), ξ), (preimπ(Ũ), ξ̃) ∈ ATM are C∞-compatible.

Proof. Let (U, x) and (Ũ , x̃) be the two charts on M giving rise to (preimπ(U), ξ) and
(preimπ(Ũ), ξ̃), respectively. We need to show that the map

ξ̃ ◦ ξ−1 : x(U ∩ Ũ)× RdimM → x̃(U ∩ Ũ)× RdimM

is smooth, as a map between open subsets of R2 dimM . Recall that such a map is smooth
if, and only if, it is smooth componentwise. On the first dimM components, ξ̃ ◦ ξ−1 acts as

x̃ ◦ x−1 : x(U ∩ Ũ)→ x̃(U ∩ Ũ)

x(p) 7→ x̃(p),
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while on the remaining dimM components it acts as the change of vector components we
met previously, i.e.

Xa 7→ X̃a = ∂b(y
a ◦ x−1)(x(p))Xb.

Hence, we have

ξ̃ ◦ ξ−1 : x(U ∩ Ũ)× RdimM → x̃(U ∩ Ũ)× RdimM

(x(π(X)), X1, . . . , XdimM ) 7→ (x̃(π(X)), X̃1, . . . , X̃dimM ),

which is smooth in each component, and hence smooth.

B.5 Vector fields

Definition. Let M be a smooth manifold, and let TM π−→ M be its tangent bundle. A
vector field onM is a smooth section of the tangent bundle, i.e. a smooth map σ : M → TM

such that π ◦ σ = idM .
TM

M

πσ

We denote the set of all vector fields on M by Γ(TM), i.e.

Γ(TM) := {σ : M → TM | σ is smooth and π ◦ σ = idM}.

This is, in fact, the standard notation for the set of all sections on a bundle.

Definition. Let φ : M → N be smooth. The push-forward φ∗ is defined as

φ∗ : TM → TN

X 7→ (φ∗)π(X)(X).

Any vector X ∈ TM must belong to TpM for some p ∈ M , namely p = π(X). The
map φ∗ simply takes any vector X ∈ TM and applies the usual push-forward at the “right”
point, producing a vector in TN . One can similarly define φ∗ : T ∗N → T ∗M .

The ideal next step would be to try to construct a map Φ∗ : Γ(TM) → Γ(TN) that
allows us to push vector fields on M forward to vector fields on N . Given σ ∈ Γ(TM), we
would like to construct a Φ∗(σ) ∈ Γ(TN). This is not trivial, since Φ∗(σ) needs to be, in
particular, a smooth map N → TN . Note that the composition φ∗ ◦ σ is a map M → TN ,
and hence imφ∗◦σ(M) ⊆ TN . Thus, we can try to define Φ∗(σ) by mapping each p ∈ N
to some tangent vector in imφ∗◦σ(M). Unfortunately, there are at least two ways in which
this can go wrong.

1. The map φ may fail to be injective. Then, there would be two points p1, p2 ∈M such
that p1 6= p2 and φ(p1) = φ(p2) =: q ∈ N . Hence, we would have two tangent vectors
on N with base-point q, namely (φ∗ ◦ σ)(p1) and (φ∗ ◦ σ)(p2). These two need not be
equal, and if they are not then the map Φ∗(σ) is ill-defined at q.
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2. The map φ may fail to be surjective. Then, there would be some q ∈ N such that
there is no X ∈ imφ∗◦σ(M) with π(X) = q (where π : TN → N). The map Φ∗(σ)

would then be undefined at q.

3. Even if the map φ is bijective, its inverse φ−1 may fail to be smooth. But then Φ∗(σ)

would not be guaranteed to be a smooth map.

Of course, everything becomes easier if φ : M → N is a diffeomorphism.

TM TN

M N

φ∗

σ

φ

Φ∗(σ)

If σ ∈ Γ(TM), we can define the push-forward Φ∗(σ) ∈ Γ(TN) as

Φ∗(σ) := φ∗ ◦ σ ◦ φ−1.

More generally, if φ : M → N is smooth and σ ∈ Γ(TM), τ ∈ Γ(TN), we can define
Φ∗(σ) = τ if σ and τ are φ-related, i.e. if they satisfy

τ ◦ φ = φ∗ ◦ σ.

We can equip the set Γ(TM) with the following operations. The first is our, by now
familiar, pointwise addition:

⊕ : Γ(TM)× Γ(TM)→ Γ(TM)

(σ, τ) 7→ σ ⊕ τ,

where

σ ⊕ τ : M → Γ(TM)

p 7→ (σ ⊕ τ)(p) := σ(p) + τ(p).

Note that the + on the right hand side above is the addition in TpM . More interestingly,
we also define the following multiplication operation:

� : C∞(M)× Γ(TM)→ Γ(TM)

(f, σ) 7→ f � σ,

where

f � σ : M → Γ(TM)

p 7→ (f � σ)(p) := f(p)σ(p).

Note that since f ∈ C∞(M), we have f(p) ∈ R and hence the multiplication above is the
scalar multiplication on TpM .

If we consider the triple (C∞(M),+, •), where • is pointwise function multiplication as
defined in the section on algebras and derivations, then the triple (Γ(TM),⊕,�) satisfies
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• (Γ(TM),⊕) is an abelian group, with 0 ∈ Γ(TM) being the section that maps each
p ∈M to the zero tangent vector in TpM ;

• Γ(TM) \ {0} satisfies

i) ∀ f ∈ C∞(M) : ∀σ, τ ∈ Γ(TM) \ {0} : f � (σ ⊕ τ) = (f � σ)⊕ (f � τ);

ii) ∀ f, g ∈ C∞(M) : ∀σ ∈ Γ(TM) \ {0} : (f + g)� σ = (f � σ)⊕ (g � σ);

iii) ∀ f, g ∈ C∞(M) : σ ∈ Γ(TM) \ {0} : (f • g)� σ = f � (g � σ);

iv) ∀σ ∈ Γ(TM) \ {0} : 1� σ = σ,

where 1 ∈ C∞(M) maps every p ∈M to 1 ∈ R.

These are precisely the axioms for a vector space! The only obstacle to saying that
Γ(TM) is a vector space over C∞(M) is that the triple (C∞(M),+, •) is not an algebraic
field, but only a ring. We could simply talk about “vector spaces over rings”, but vector
spaces over ring have wildly different properties than vector spaces over fields, so much so
that they have their own name: modules.

Remark .77. Of course, we could have defined � simply as pointwise global scaling, using
the reals R instead of the real functions C∞(M). Then, since (R,+, ·) is an algebraic field,
we would then have the obvious R-vector space structure on Γ(TM). However, a basis for
this vector space is necessarily uncountably infinite, and hence it does not provide a very
useful decomposition for our vector fields.

Instead, the operation � that we have defined allows for local scaling, i.e. we can scale
a vector field by a different value at each point, and a much more useful decomposition of
vector fields within the module structure.
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C Principal fibre bundles

Very roughly speaking, a principal fibre bundle is a bundle whose typical fibre is a Lie group.
Principal fibre bundles are so immensely important because they allow us to understand
any fibre bundle with fibre F on which a Lie group G acts. These are then called associated
fibre bundles, and will be discussed later on.

C.1 Differential forms

Definition. Let M be a smooth manifold. A (differential) n-form on M is a (0, n) smooth
tensor field ω which is totally antisymmetric, i.e.

ω(X1, . . . , Xn) = sgn(π)ω(Xπ(1), . . . , Xπ(n)),

for any π ∈ Sn, with Xi ∈ Γ(TM).

Definition. Let φ : M → N be a smooth map and let ω ∈ Ωn(N). Then we define the
pull-back Φ∗(ω) ∈ Ωn(M) of ω as

Φ∗(ω) : M → T ∗M

p 7→ Φ∗(ω)(p),

where
Φ∗(ω)(p)(X1, . . . , Xn) := ω(φ(p))

(
φ∗(X1), . . . , φ∗(Xn)

)
,

for Xi ∈ TpM .

The map Φ∗ : Ωn(N)→ Ωn(M) is R-linear, and its action on Ω0(M) is simply

Φ∗ : Ω0(M)→ Ω0(M)

f 7→ Φ∗(f) := f ◦ φ.

Definition. Let M be a smooth manifold. We define the wedge (or exterior) product of
forms as the map

∧ : Ωn(M)× Ωm(M)→ Ωn+m(M)

(ω, σ) 7→ ω ∧ σ,

where

(ω ∧ σ)(X1, . . . , Xn+m) :=
1

n!m!

∑
π∈Sn+m

sgn(π)(ω ⊗ σ)(Xπ(1), . . . , Xπ(n+m))

and X1, . . . , Xn+m ∈ Γ(TM). By convention, for any f, g ∈ Ω0(M) and ω ∈ Ωn(M), we set

f ∧ g := fg and f ∧ ω = ω ∧ f = fω.
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Example .78. Suppose that ω, σ ∈ Ω1(M). Then, for any X,Y ∈ Γ(TM)

(ω ∧ σ)(X,Y ) = (ω ⊗ σ)(X,Y )− (ω ⊗ σ)(Y,X)

= (ω ⊗ σ)(X,Y )− ω(Y )σ(X)

= (ω ⊗ σ)(X,Y )− (σ ⊗ ω)(X,Y )

= (ω ⊗ σ − σ ⊗ ω)(X,Y ).

Hence
ω ∧ σ = ω ⊗ σ − σ ⊗ ω.

The wedge product is bilinear over C∞(M), that is

(fω1 + ω2) ∧ σ = f ω1 ∧ σ + ω2 ∧ σ,

for all f ∈ C∞(M), ω1, ω2 ∈ Ωn(M) and σ ∈ Ωm(M), and similarly for the second argument.

Remark .79. If (U, x) is a chart on M , then every n-form ω ∈ Ωn(U) can be expressed
locally on U as

ω = ωa1···an dxa1 ∧ · · · ∧ dxan ,

where ωa1···an ∈ C∞(U) and 1 ≤ a1 < · · · < an ≤ dimM . The dxai appearing above are
the covector fields (1-forms)

dxai : p 7→ dpx
ai .

The pull-back distributes over the wedge product.

Theorem .80. Let φ : M → N be smooth, ω ∈ Ωn(N) and σ ∈ Ωm(N). Then, we have

Φ∗(ω ∧ σ) = Φ∗(ω) ∧ Φ∗(σ).

Proof. Let p ∈M and X1, . . . , Xn+m ∈ TpM . Then we have(
Φ∗(ω) ∧ Φ∗(σ)

)
(p)(X1, . . . , Xn+m)

=
1

n!m!

∑
π∈Sn+m

sgn(π)
(
Φ∗(ω)⊗ Φ∗(σ)

)
(p)(Xπ(1), . . . , Xπ(n+m))

=
1

n!m!

∑
π∈Sn+m

sgn(π)Φ∗(ω)(p)(Xπ(1), . . . , Xπ(n))

Φ∗(σ)(p)(Xπ(n+1), . . . , Xπ(n+m))

=
1

n!m!

∑
π∈Sn+m

sgn(π)ω(φ(p))
(
φ∗(Xπ(1)), . . . , φ∗(Xπ(n))

)
σ(φ(p))

(
φ∗(Xπ(n+1)), . . . , φ∗(Xπ(n+m))

)
=

1

n!m!

∑
π∈Sn+m

sgn(π)(ω ⊗ σ)(φ(p))
(
φ∗(Xπ(1)), . . . , φ∗(Xπ(n+m))

)
= (ω ∧ σ)(φ(p))

(
φ∗(X1), . . . , φ∗(Xn+m)

)
= Φ∗(ω ∧ σ)(p)(X1, . . . , Xn+m).

Since p ∈M was arbitrary, the statement follows.
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C.2 The exterior derivative

We will need the following definition.

Definition. Let M be a smooth manifold and let X,Y ∈ Γ(TM). The commutator (or
Lie bracket) of X and Y is defined as

[X,Y ] : C∞(M)
∼−→ C∞(M)

f 7→ [X,Y ](f) := X(Y (f))− Y (X(f)),

where we are using the definition of vector fields as R-linear maps C∞(M)
∼−→ C∞(M).

Definition. The exterior derivative on M is the R-linear operator

d: Ωn(M)
∼−→ Ωn+1(M)

ω 7→ dω

with dω being defined as

dω(X1, . . . , Xn+1) :=
n+1∑
i=1

(−1)i+1Xi

(
ω(X1, . . . , X̂i, . . . , Xn+1)

)
+
∑
i<j

(−1)i+j ω
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xn+1

)
,

where Xi ∈ Γ(TM) and the hat denotes omissions.

Example .81. In the case n = 1, the form dω ∈ Ω2(M) is given by

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Let us check that this is indeed a 2-form, i.e. an antisymmetric, C∞(M)-multilinear map

dω : Γ(TM)× Γ(TM)→ C∞(M).

By using the antisymmetry of the Lie bracket, we immediately get

dω(X,Y ) = −dω(Y,X).

Moreover, thanks to this identity, it suffices to check C∞(M)-linearity in the first argument
only. Additivity is easily checked

dω(X1 +X2, Y ) = (X1 +X2)(ω(Y ))− Y (ω(X1 +X2))− ω([X1 +X2, Y ])

= X1(ω(Y )) +X2(ω(Y ))− Y (ω(X1) + ω(X2))− ω([X1, Y ] + [X2, Y ])

= X1(ω(Y )) +X2(ω(Y ))− Y (ω(X1))− Y (ω(X2))− ω([X1, Y ])− ω([X2, Y ])

= dω(X1, Y ) + dω(X2, Y ).
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For C∞(M)-scaling, first we calculate [fX, Y ]. Let g ∈ C∞(M). Then

[fX, Y ](g) = fX(Y (g))− Y (fX(g))

= fX(Y (g))− fY (X(g))− Y (f)X(g)

= f(X(Y (g))− Y (X(g)))− Y (f)X(g)

= f [X,Y ](g)− Y (f)X(g)

= (f [X,Y ]− Y (f)X)(g).

Therefore
[fX, Y ] = f [X,Y ]− Y (f)X.

Hence, we can calculate

dω(fX, Y ) = fX(ω(Y ))− Y (ω(fX))− ω([fX, Y ])

= fX(ω(Y ))− Y (fω(X))− ω(f [X,Y ]− Y (f)X)

= fX(ω(Y ))− fY (ω(X))− Y (f)ω(X)− fω([X,Y ]) + ω(Y (f)X)

= fX(ω(Y ))− fY (ω(X))−������
Y (f)ω(X)− fω([X,Y ]) +������

Y (f)ω(X)

= f dω(X,Y ),

which is what we wanted.

The exterior derivative satisfies a graded version of the Leibniz rule with respect to the
wedge product.

Theorem .82. Let ω ∈ Ωn(M) and σ ∈ Ωm(M). Then

d(ω ∧ σ) = dω ∧ σ + (−1)n ω ∧ dσ.

Proof. We will work in local coordinates. Let (U, x) be a chart on M and write

ω = ωa1···andxa1 ∧ · · · ∧ dxan =: ωAdxA

σ = σb1···bmdxb1 ∧ · · · ∧ dxbm =: σBdxB.

Locally, the exterior derivative operator d acts as

dω = dωA ∧ dxA.

Hence

d(ω ∧ σ) = d(ωAσB dxA ∧ dxB)

= d(ωAσB) ∧ dxA ∧ dxB

= (σBdωA + ωAdσB) ∧ dxA ∧ dxB

= σBdωA ∧ dxA ∧ dxB + ωAdσB ∧ dxA ∧ dxB

= σBdωA ∧ dxA ∧ dxB + (−1)nωAdxA ∧ dσB ∧ dxB

= σBdω ∧ dxB + (−1)nωAdxA ∧ dσ

= dω ∧ σ + (−1)n ω ∧ dσ

since we have “anticommuted” the 1-form dσB through the n-form dxA, picking up n minus
signs in the process.
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An important property of the exterior derivative is the following.

Theorem .83. Let φ : M → N be smooth. For any ω ∈ Ωn(N), we have

Φ∗(dω) = d(Φ∗(ω)).

Proof (sketch). We first show that this holds for 0-forms (i.e. smooth functions).
Let f ∈ C∞(N), p ∈M and X ∈ TpM . Then

Φ∗(df)(p)(X) = df(φ(p))(φ∗(X)) (definition of Φ∗)

= φ∗(X)(f) (definition of df)

= X(f ◦ φ) (definition of φ∗)

= d(f ◦ φ)(p)(X) (definition of d(f ◦ φ))
= d(Φ∗(f))(p)(X) (definition of Φ∗),

so that we have Φ∗(df) = d(Φ∗(f)).
The general result follows from the linearity of Φ∗ and the fact that the pull-back

distributes over the wedge product.

Definition. Let M be a smooth manifold. A 2-form ω ∈ Ω2(M) is said to be a symplectic
form on M if dω = 0 and if it is non-degenerate, i.e.

(∀Y ∈ Γ(TM) : ω(X,Y ) = 0)⇒ X = 0.

A manifold equipped with a symplectic form is called a symplectic manifold.

C.3 Lie group actions on a manifold

Definition. Let (G, •) be a Lie group and let M be a smooth manifold. A smooth map

B : G×M →M

(g, p) 7→ g B p

satisfying

i) ∀ p ∈M : e B p = p;

ii) ∀ g1, g2 ∈ G : ∀ p ∈M : (g1 • g2) B p = g1 B (g2 B p),

is called a left Lie group action, or left G-action, on M .

Definition. A manifold equipped with a left G-action is called a left G-manifold.

Definition. Similarly, a right G-action on M is a smooth map

C : M ×G→M

(p, g) 7→ p C g

satisfying
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i) ∀ p ∈M : p C g = p;

ii) ∀ g1, g2 ∈ G : ∀ p ∈M : p C (g1 • g2) = (p C g1) C g2.

Proposition .84. Let B be a left G-action on M . Then

C : M ×G→M

(p, g) 7→ p C g := g−1 B p

is a right G-action on M .

Definition. Let G,H be Lie groups, let ρ : G→ H be a Lie group homomorphism and let

B : G×M →M,

I : H ×N → N

be left actions of G and H on some smooth manifolds M and N , respectively. Then, a
smooth map f : M → N is said to be ρ-equivariant if the diagram

G×M H ×N

M N

B

ρ×f

I

f

where (ρ× f)(g, p) := (ρ(g), f(p)) ∈ H ×N , commutes. Equivalently,

∀ g ∈ G : ∀ p ∈M : f(g B p) = ρ(g) I f(p).

In other words, if ρ : G → H is a Lie group homomorphism, then the ρ-equivariant
maps are the “action-preserving” maps between the G-manifold M and the H-manifold N .

Remark .85. Note that by setting ρ = idG or f = idM , the notion of f being ρ-equivariant
reduces to what we might call a homomorphism of G-manifolds in the former case, and a
homomorphism of left actions on M in the latter.

Definition. Let B : G×M → M be a left G-action. For each p ∈ M , we define the orbit
of p as the set

Gp := {q ∈M | ∃ g ∈ G : q = g B p}.

Alternatively, the orbit of p is the image of G under the map (− B p). It consists of
all the points in M that can be reached from p by successive applications of the action B.

Example .86. Consider the action induced by representation of SO(2,R) as rotation matrices
in End(R2). The orbit of any p ∈ R2 is the circle of radius |p| centred at the origin.
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R2

p

Gp

|p|

q

Gq

|q|

G00

It should be intuitively clear from the definition that the orbits of two points are either
disjoint or coincide. In fact, we have the following.

Proposition .87. Let B : G×M →M be an action on M . Define a relation on M

p ∼ q :⇔ ∃ g ∈ G : q = g B p.

Then ∼ is an equivalence relation on M .

The equivalence classes of ∼ are, by definition, the orbits.

Definition. Let B : G×M →M be an action on M . The orbit space of M is

M/G := M/∼= {Gp | p ∈M}.

Example .88. The orbit space of our previous SO(2,R)-action on R2 is the partition of R2

into concentric circles centred at the origin, plus the origin itself.

Definition. Let B : G×M →M be a G-action on M . The stabiliser of p ∈M is

Sp := {g ∈ G | g B p = p}.

Note that for each p ∈M , the stabiliser Sp is a subgroup of G.

Example .89. In our SO(2,R) example, we have Sp = {idR2} for p 6= 0 and S0 = SO(2,R).

Definition. A left G-action B : G×M →M is said to be

i) free if for all p ∈M , we have Sp = {e};

ii) transitive if for all p, q ∈M , there exists g ∈ G such that p = g B p.

Example .90. The action B : G × V → V induced by a representation R : G → GL(V ) is
never free since we always have S0 = G.

Example .91. Consider the action B : T(n) × Rn → Rn of the n-dimensional translation
group T(n) on Rn. We have, rather trivially, T(n)p = Rn for every p ∈ Rn.It is also easy
to show that this action is free and transitive.
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Proposition .92. Let B : G×M →M be a free action. Then

g1 B p = g2 B p ⇔ g1 = g2.

Proposition .93. If B : G×M →M is a free action, then

∀ p ∈ G : Gp ∼=diff G.

Example .94. Define B : SO(2,R)×R2 \{0} → R2 \{0} to coincide with the action induced
by the representation of SO(2,R2) on R2 for each non-zero point of R2. Then this action
is free, since we have Sp = {idR2} for p 6= 0, and the previous proposition implies

∀ p ∈ R2 \ {0} : SO(2,R)p ∼=diff SO(2,R) ∼=diff S
1.

C.4 Principal fibre bundles

Definition. Let G be a Lie group. A smooth bundle (E, π,M) is called a principal G-
bundle if E is equipped with a free right G-action and

E

M

π
∼=bdl

E

E/G

ρ

where ρ is the quotient map, defined by sending each p ∈ E to its equivalence class (i.e.
orbit) in the orbit space E/G.

Observe that since the right action of G on E is free, for each p ∈ E we have

preimρ(Gp) = Gp ∼=diff G.

Remark .95. A slight generalisation would be to consider smooth bundles E π−→M where E
is equipped with a right G-action which is free and transitive on each fibre of E π−→M . The
isomorphism in our definition enforces the fibre-wise transitivity since G acts transitively
on each Gp by the definition of orbit.

C.5 Principal bundle morphisms

Recall that a bundle morphism (also called simply a bundle map) between two bundles
(E, π,M) and (E′, π′,M ′) is a pair of maps (u, f) such that the diagram

E E′

M M ′

π

u

π′

f

commutes, that is, f ◦ π = π′ ◦ u.
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Definition. Let (P, π,M) and (Q, π′, N) be principal G-bundles. A principal bundle mor-
phism from (P, π,M) to (Q, π′, N) is a pair of smooth maps (u, f) such that the diagram

P Q

P Q

M N

u

CG

π

u

JG

π′

f

commutes, that is for all p ∈ P and g ∈ G, we have

(f ◦ π)(p) = (π′ ◦ u)(p)

u(p C g) = u(p) J g.

Note that P CG−−−−−→ P is a shorthand for the inclusion of P into the product P ×G
followed by the right action C, i.e.

P P
CG

= P P ×G P
i1 C

and similarly for Q JG−−−−−→ Q.

Definition. A principal bundle morphism between two principal G-bundles is an isomor-
phism (or diffeomorphism) of principal bundles if it is also a bundle isomorphism.

Remark .96. Note that the passage from principal bundle morphism to principal bundle
isomorphism does not require any extra condition involving the Lie group G. We will soon
see that this is because the two bundles are both principal G-bundles. We can further
generalise the notion of principal bundle morphism as follows.

Definition. Let (P, π,M) be a principal G-bundle, let (Q, π′, N) be a principal H-bundle,
and let ρ : G → H be a Lie group homomorphism. A principal bundle morphism from
(P, π,M) to (Q, π′, N) is a pair of smooth maps (u, f) such that the diagram

P Q

P ×G Q×H

P Q

M N

u

C

u×ρ

J

i1

π

u

i1

π′

f
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commutes, that is f ◦ π = π′ ◦ u and u is a ρ-equivariant map

∀ p ∈ P : ∀ g ∈ G : u(p C g) = u(p) J ρ(g).

Definition. A principal bundle morphism between principal G-bundle and a principal H-
bundle is an isomorphism (or diffeomorphism) of principal bundles if it is also a bundle
isomorphism and ρ is a Lie group isomorphism.

Lemma .97. Let (P, π,M) and (Q, π′,M) be principal G-bundles over the same base man-
ifold M . Then, any u : P → Q such that (u, idM ) is a principal bundle morphism is neces-
sarily a diffeomorphism.

P Q

P Q

M

u

CG

π

u

JG

π′

Definition. A principal G-bundle (P, π,M) if it is called trivial if it is isomorphic as a
principal G-bundle to the principal G-bundle (M × G, π1,M) where π1 is the projection
onto the first component and the action is defined as

J : (M ×G)×G→M ×G
((p, g), g′) 7→ (p, g) J g′ := (p, g • g′).

By the previous lemma, a principal G-bundle (P, π,M) is trivial if there exists a smooth
map u : P →M ×G such that the following diagram commutes.

P M ×G

P M ×G

M

u

CG

π

u

JG

π1

The following result provides a necessary and sufficient criterion for when a principal
bundle is trivial. Note that while we have used the lower case letter p almost exclusively to
denote points of the base manifold M , in the next proof we will use it to denote points of
the total space P instead.

Theorem .98. A principal G-bundle (P, π,M) is trivial if, and only if, there exists a smooth
section σ ∈ Γ(P ), that is, a smooth σ : M → P such that π ◦ σ = idM .
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Proof. (⇒) Suppose that (P, π,M) is trivial. Then there exists a diffeomorphism u : P →
M ×G which make the following diagram commute

P

P M ×G

M

CG

π

u−1

π1

We can define

σ : M → P

m 7→ u−1(m, e),

where e is the identity of G. Then σ is smooth since it is the composition of u−1 with
the map p 7→ (p, e), which are both smooth. We also have

(π ◦ σ)(pm = π(u−1(m, e)) = π1(m, e) = m,

for all m ∈M , hence π ◦ σ = idM and thus σ ∈ Γ(P ).

(⇐) Suppose that there exists a smooth section σ : M → P . Let p ∈ P and consider the
point σ(π(p)) ∈ P . We have

π(σ(π(p))) = idM (π(p)) = π(p),

hence σ(π(p)) and p belong to the same fibre, and thus there exists a unique group
element in G which links the two points via C. Since this element depends on both
σ and p, let us denote it by χσ(p). Then, χσ defines a function

χσ : P → G

p 7→ χσ(p)

and we can write
∀ p ∈ P : p = σ(π(p)) C χσ(p).

In particular, for any other g ∈ G we have p C g ∈ P and thus

p C g = σ(π(p C g)) C χσ(p C g) = σ(π(p)) C χσ(p C g),

where the second equality follows from the fact that the fibres of P are precisely the
orbits under the action of G.

On the other hand, we can act on the right with an arbitrary g ∈ G directly to obtain
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p C g = (σ(π(p)) C χσ(p)) C g = σ(π(p)) C (χσ(p) • g).

Combining the last two equations yields

σ(π(p)) C χσ(p C g) = σ(π(p)) C (χσ(p) • g)

and hence
χσ(p C g) = (χσ(p) • g).

We can now define the map

uσ : P →M ×G
p 7→ (π(p), χσ(p)).

By our previous lemma, it suffices to show that uσ is a principal bundle map.

P M ×G

P M ×G

M

uσ

CG

π

uσ

JG

π1

By definition, we have

(π1 ◦ uσ)(p) = π1(π(p), χσ(p)) = π(p)

for all p ∈ P , so the lower triangle commutes. Moreover, we have

uσ(p C g) = (π(p C g), χσ(p C g))

= (π(p), χσ(p) • g))

= (π(p), χσ(p)) J g

= uσ(p) J g

for all p ∈ P and g ∈ G, so the upper square also commutes and hence (P, π,M) is a
trivial bundle.
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D Associated fibre bundles

An associated fibre bundle is a fibre bundle which is associated (in a precise sense) to a
principal G-bundle.

D.1 Associated fibre bundles

Definition. Let (P, π,M) be a principalG-bundle and let F be a smooth manifold equipped
with a left G-action B. We define

i) PF := (P × F )/∼G, where ∼G is the equivalence relation

(p, f) ∼G (p′, f ′) :⇔ ∃ g ∈ G :

{
p′ = p C g
f ′ = g−1 B f

We denote the points of PF as [p, f ].

ii) The map

πF : PF →M

[p, f ] 7→ π(p),

which is well-defined since, if [p′, f ′] = [p, f ], then for some g ∈ G

πF ([p′, f ′]) = πF ([p C g, g−1 B f ]) := π(p C g) = π(p) =: πF ([p, f ]).

The associated bundle (to (P, π,M), F and B) is the bundle (PF , πF ,M).

Definition. Let M be a smooth manifold and let (LM,π,M) be its frame bundle, with
right GL(d,R)-action as above. Let F := (Rd)×p×(Rd∗)×q and define a left GL(d,R)-action
on F by

(g B f)
a1···ap

b1···bq := (det g−1)ω ga1ã1 · · · g
ap
ãp

(g−1)b̃1b1 · · · (g
−1)

b̃q
bq
f
ã1···ãp

b̃1···̃bq
,

where ω ∈ Z. Then the associated bundle (LMF , πF ,M) is called the (p, q)-tensor ω-density
bundle on M , and its sections are called (p, q)-tensor densities of weight ω.

D.2 Associated bundle morphisms

Definition. Let (PF , πF ,M) to (QF , π
′
F , N) be the associated bundles (with the same fibre

F ) of two principal G-bundles (P, π,M) and (Q, π′, N). An associated bundle map between
the associated bundles is a bundle map (ũ, v) between them such that for some u, the pair
(u, v) is a principal bundle map between the underlying principal G-bundles and

ũ([p, f ]) := [u(p), f ].
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Equivalently, the following diagrams both commute.

PF QF

M N

πF

ũ

π′F

v

P Q

P Q

M N

u

CG

π

u

JG

π′

v

Definition. An associated bundle map (ũ, v) is an associated bundle isomorphism if ũ and
v are invertible and (ũ−1, v−1) is also an associated bundle map.

Remark .99. Note that two associated F -fibre bundles may be isomorphic as bundles but
not as associated bundles. In other words, there may exist a bundle isomorphism between
them, but there may not exist any bundle isomorphism between them which can be written
as in the definition for some principal bundle isomorphism between the underlying principal
bundles.

Recall that an F -fibre bundle (E, π,M) is called trivial if there exists a bundle isomorphism

F E M × F

M

π

u

π1

while a principal G-bundle is called trivial if there exists a principal bundle isomorphism

P M ×G

P M ×G

M

u

CG

π

u

JG

π1

Definition. An associated bundle (PF , πF ,M) is called trivial if the underlying principal
G-bundle (P, π,M) is trivial.

Proposition .100. A trivial associated bundle is a trivial fibre bundle.

Note that the converse does not hold. An associated bundle can be trivial as a fibre
bundle but not as an associated bundle, i.e. the underlying principal fibre bundle need not
be trivial simply because the associated bundle is trivial as a fibre bundle.
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Definition. Let H be a closed Lie subgroup of G. Let (P, π,M) be a principal H-bundle
and (Q, π′,M) a principal G-bundle. If there exists a principal bundle map from (P, π,M)

to (Q, π′,M), i.e. a smooth bundle map which is equivariant with respect to the inclusion of
H into G, then (P, π,M) is called an H-restriction of (Q, π′,M), while (Q, π′,M) is called
a G-extension of (P, π,M).

Theorem .101. Let H be a closed Lie subgroup of G.

i) Any principal H-bundle can be extended to a principal G-bundle.

ii) A principal G-bundle (P, π,M) can be restricted to a principal H-bundle if, and only
if, the bundle (P/H, π′,M) has a section.

Example .102. i) The bundle (LM/ SO(d), π,M) always has a section, and since SO(d)

is a closed Lie subgroup of GL(d,R), the frame bundle can be restricted to a principal
SO(d)-bundle. This is related to the fact that any manifold can be equipped with a
Riemannian metric.

ii) The bundle (LM/ SO(1, d − 1), π,M) may or may not have a section. For example,
the bundle (LS2/ SO(1, 1), π, S2) does not admit any section, and hence we cannot
restrict (LS2/ SO(1, 1), π, S2) to a principal SO(1, 1)-bundle, even though SO(1, 1) is
a closed Lie subgroup of GL(2,R). This is related to the fact that the 2-sphere cannot
be equipped with a Lorentzian metric.
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E Connections and connection 1-forms

In elementary courses on differential geometry or general relativity, the notions of con-
nection, parallel transport and covariant derivative are often confused with one another.
Sometimes, the terms are even used as synonyms. If you have seen any of that before, it is
probably best to forget about it for the time being. The conceptual sequence “connection,
parallel transport covariant derivative” is in decreasing order of generality, and it should be
clear that treating these terms as synonyms will inevitably lead to confusion. We will now
discuss the first of these in some detail.

E.1 Connections on a principal bundle

Definition. Let (P, π,M) be a principal bundle and let p ∈ P . The vertical subspace at p
is the vector subspace of TpP given by

VpP := ker((π∗)p)

= {Xp ∈ TpP | (π∗)p(Xp) = 0}.

Lemma .103. For all A ∈ TeG and p ∈ P , we have XA
p ∈ VpP .

Proof. Since the action of G simply permutes the elements within each fibre, we have

π(p) = π(p C exp(tA)),

for any t. Let f ∈ C∞(M) be arbitrary. Then

(π∗)pX
A
p (f) = XA

p (f ◦ π)

= [(f ◦ π)(p C exp(tA))]′(0)

= [f(π(p))]′(0)

= 0,

since f(π(p)) is constant. Hence XA
p ∈ VpP . Alternatively, one can also argue that (π∗)pX

A
p

is the tangent vector to a constant curve on M .

In particular, the map ip : TeG
∼−→ VpP is now a bijection.

Definition. Let (P, π,M) be a principal bundle and let p ∈ P . A horizontal subspace at p
a vector subspace HpP of TpP which is complementary to VpP , i.e.

TpP = HpP ⊕ VpP.

The choice of horizontal space at p ∈ P is not unique. However, once a choice is made,
there is a unique decomposition of each Xp ∈ TpP as

Xp = hor(Xp) + ver(Xp),

with hor(Xp) ∈ HpP and ver(Xp) ∈ VpP .
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Definition. A connection on a principal G-bundle (P, π,M) is a choice of horizontal space
at each p ∈ P such that

i) For all g ∈ G, p ∈ P and Xp ∈ HpP , we have

(C g)∗Xp ∈ HpCgP,

where (C g)∗ is the push-forward of the map (− C g) : P → P and it is a bijection.
We can also write this condition more concisely as

(C g)∗(HpP ) = HpCgP.

ii) For every smooth X ∈ Γ(TP ), the two summands in the unique decomposition

X|p = hor(X|p) + ver(X|p)

at each p ∈ P , extend to smooth hor(X), ver(X) ∈ Γ(TM).

E.2 Connection one-forms

Definition. The map ω : p → ωp sending each p ∈ P to the TeG-valued one-form ωp is
called the connection one-form with respect to the connection.

Lemma .104. For all p ∈ P , g ∈ G and A ∈ TeG, we have

(C g)∗X
A
p = X

(Adg−1 )∗A
pCg .

Proof. Let f ∈ C∞(P ) be arbitrary. We have

(C g)∗X
A
p (f) = XA

p (f ◦ (− C g))

= [f(p C exp(tA) C g)]′(0)

= [f(p C g C g−1 C exp(tA) C g)]′(0)

= [f(p C g C (g−1 • exp(tA) • g)]′(0)

= [f(p C g C Adg−1(exp(tA))]′(0)

= [f(p C g C exp(t(Adg−1)∗A)]′(0)

= X
(Adg−1 )∗A
pCg (f),

which is what we wanted.

Theorem .105. A connection one-form ω with respect to a connection satisfies

a) For all p ∈ P , we have ωp(XA
p ) = A, that is ωp ◦ ip = idTeG.

TeG VpP

TeG

ip

idTeG
ωp|VpP
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b) ((C g)∗ω)|p(Xp) = (Adg−1)∗(ωp(Xp))

TpP TeG

TeG

ωp

((Cg)∗ω)|p
(Adg−1 )∗

c) ω is a smooth one-form.

Proof. a) Since XA
p ∈ VpP , by definition of ω we have

ωp(X
A
p ) := i−1

p (ver(XA
p )) = i−1

p (XA
p ) = A.

b) First observe that the left hand side is linear in Xp. Consider the two cases

b.1) Suppose that Xp ∈ VpP . Then Xp = XA
p for some A ∈ TeG. Hence

((C g)∗ω)|p(XA
p ) = ωpCg((C g)∗X

A
p )

= ωpCg

(
X

(Adg−1 )∗A
pCg

)
= (Adg−1)∗A

= (Adg−1)∗(ωp(X
A
p ))

b.2) Suppose now that Xp ∈ HpP = ker(ωp). Then

((C g)∗ω)|p(Xp) = ωpCg((C g)∗Xp) = 0

since (C g)∗Xp ∈ HpCgP = ker(ωpCg).

Let Xp ∈ TpP . We have

((C g)∗ω)|p(Xp) = ((C g)∗ω)|p(ver(Xp) + hor(Xp))

= ((C g)∗ω)|p(ver(Xp)) + ((C g)∗ω)|p(hor(Xp))

= (Adg−1)∗(ωp(ver(Xp))) + 0

= (Adg−1)∗(ωp(ver(Xp))) + (Adg−1)∗(ωp(hor(Xp)))

= (Adg−1)∗(ωp(ver(Xp) + hor(Xp)))

= (Adg−1)∗(ωp(Xp))

c) We have ω = i−1 ◦ ver and both i−1 and ver are smooth.

– 90 –



F Local representations of a connection on the base manifold: Yang-Mills
fields

We have seen how to associate a connection one-form to a connection, i.e. a certain Lie-
algebra-valued one-form to a smooth choice of horizontal spaces on the principal bundle.
We will now study how we can express this connection one-form locally on the base manifold
of the principal bundle.

F.1 Yang-Mills fields and local representations

Definition. Given a connection one-form ω on P , such a local section σ induces

i) a Yang-Mills field ωU : Γ(TU)
∼−→ TeG given by

ωU := σ∗ω;

ii) a local trivialisation of the principal bundle P , i.e. a map

h : U ×G→ P

(m, g) 7→ σ(m) C g;

iii) a local representation of ω on U by

h∗ω : Γ(T (U ×G))
∼−→ TeG.

Note that, at each point (m, g) ∈ U ×G, we have

T(m,g)(U ×G) ∼=Lie alg TmU ⊕ TgG.

Remark .106. Both the Yang-Mills field ωU and the local representation h∗ω encode the
information carried by ω locally on U . Since h∗ω involves U × G while ωU doesn’t, one
might guess that h∗ω gives a more “accurate” picture of ω on U than the Yang-Mills field.
But in fact, this is not the case. They both contain the same amount of local information
about the connection one-form ω.

F.2 The Maurer-Cartan form

Theorem .107. For all v ∈ TmU and γ ∈ TgG, we have

(h∗ω)(m,g)(v, γ) = (Adg−1)∗(ω
U (v)) + Ξg(γ),

where Ξg is the Maurer-Cartan form

Ξg : TgG
∼−→ TeG

LAg 7→ A.
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Example .108. Let (GL+(d,R), x) be a chart on GL(d,R), where GL+(d,R) denotes an
open subset of GL(d,R) containing the identity idRd , and let xij : GL+(d,R) → R denote
the corresponding co-ordinate functions

GL+(d,R) x(GL+(d,R)) ⊆ Rd2

R

xij

x

projij

so that xij(g) := gij . Recall that the co-ordinate functions are smooth maps on the chart
domain, i.e. we have xij ∈ C∞(GL+(d,R)). Also recall that to each A ∈ TidRd

GL(d,R)

there is associated a left-invariant vector field

LA : C∞(GL+(d,R))
∼−→ C∞(GL+(d,R))

which, at each point g ∈ GL(d,R), is the tangent vector to the curve

γA(t) := g • exp(tA).

Consider the action of LA on the co-ordinate functions:

(LAxij)(g) = [xij(g • exp(tA))]′(0)

= [xij(g • etA)]′(0)

= (gik(e
tA)kj)

′(0)

= gikA
k
j ,

where we have used the fact that for a matrix Lie group, the exponential map is just the
ordinary exponential

exp(A) = eA :=
∞∑
n=0

1

n!
An.

Hence, we can write

LA|g = gikA
k
j

(
∂

∂xij

)
g

from which we can read-off the Maurer-Cartan form of GL(d,R)

(Ξg)
i
j := (g−1)ik(dx

k
j)g.

Indeed, we can quickly check that

(Ξg)
i
j(L

A) = (g−1)ik(dx
k
j)g

(
gprA

r
q

(
∂

∂xpq

)
g

)
= (g−1)ikg

p
rA

r
qδ
k
pδ
q
j

= (g−1)ipg
p
rA

r
j

= δirA
r
j

= Aij .
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F.3 The gauge map

Definition. Within the above set-up, the gauge map is the map

Ω: U1 ∩ U2 → G

where, for each m ∈ U1 ∩ U2, the Lie group element Ω(m) ∈ G satisfies

σ2(m) = σ1(m) C Ω(m).

Note that since the G-action C on P is free, for each m there exists a unique Ω(m)

satisfying the above condition, and hence the gauge map Ω is well-defined.

Theorem .109. Under the above assumptions, we have

(ωU2)m = (AdΩ−1(m))∗(ω
U1) + (Ω∗Ξg)m.
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G Parallel transport

The idea of parallel transport on a principal bundle hinges on that of horizontal lift of a
curve on the base manifold, which is a lifting to a curve on the principal bundle in the sense
that the projection to the base manifold of this curve gives the curve we started with. In
particular, if the principal bundle is equipped with a connection, we would like to impose
some extra conditions on this lifting, so that it “connects” nearby fibres in a nice way.

G.1 Horizontal lifts to the principal bundle

Definition. Let (P, π,M) be a principal G-bundle equipped with a connection and let
γ : [0, 1]→M be a curve on M . The horizontal lift of γ through p0 ∈ P is the unique curve

γ↑ : [0, 1]→ P

with γ↑(0) = p0 ∈ preimπ({γ(0)}) satisfying

i) π ◦ γ↑ = γ;

ii) ∀λ ∈ [0, 1] : ver(Xγ↑,γ↑(λ)) = 0;

iii) ∀λ ∈ [0, 1] : π∗(Xγ↑,γ↑(λ)) = Xγ,γ(λ).

We have the following result characterizing the curve g appearing above.

Theorem .110. The (first order) ODE satisfied by the curve g : [0, 1]→ G is

(Adg(λ)−1)∗(ωδ(λ)(Xδ,δ(λ))) + Ξg(λ)(Xg,g(λ)) = 0

with the initial condition g(0) = g0.

Corollary .111. If G is a matrix group, then the above ODE takes the form

g(λ)−1(ωδ(λ)(Xδ,δ(λ)))g(λ) + g(λ)−1ġ(λ) = 0

where we denoted matrix multiplication by juxtaposition and ġ(λ) denotes the derivative
with respect to λ of the matrix entries of g. Equivalently, by multiplying both sides on the
left by g(λ),

ġ(λ) = −(ωδ(λ)(Xδ,δ(λ)))g(λ).

G.2 Solution of the horizontal lift ODE by a path-ordered exponential

As a first step towards the solution of our ODE, consider

g(t) := g0 −
∫ t

0
dλΓµ(γ(λ)) γ̇µ(λ)g(λ).

This doesn’t seem to have brought us far since the function g that we would like to determine
appears again on the right hand side. However, we can now iterate this definition to obtain

g(t) = g0 −
∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)

(
g0 −

∫ λ1

0
dλ2 Γν(γ(λ2))γ̇ν(λ2)

)
= g0 −

∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)g0 +

∫ t

0
dλ1

∫ λ1

0
dλ2 Γµ(γ(λ1))γ̇µ(λ1)Γν(γ(λ2))γ̇ν(λ2)g(λ2).
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Matters seem to only get worse, until one realises that the first integral no longer contains
the unknown function g. Hence, the above expression provides a “first-order” approximation
to g. It is clear that we can get higher-order approximations by iterating this process

g(t) = g0 −
∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)g0

+

∫ t

0
dλ1

∫ λ1

0
dλ2 Γµ(γ(λ1))γ̇µ(λ1)Γν(γ(λ2))γ̇ν(λ2)g0

...

+ (−1)n
∫ t

0
dλ1

∫ λ1

0
dλ2 · · ·

∫ λn−1

0
dλn Γµ(γ(λ1))γ̇µ(λ1) · · ·Γν(γ(λn))γ̇ν(λn) g(λn).

Note how the range of each integral depends on the integration variable of the previous
integral. It would much nicer if we could have the same range in each integral. In fact,
there is a standard trick to achieve this. The region of integration in the double integral is

0 t

t

λ1

λ2

and if the integrand f(λ1, λ2) is invariant under the exchange λ1 ↔ λ2, we have∫ t

0
dλ1

∫ λ1

0
dλ2 f(λ1, λ2) =

1

2

∫ t

0
dλ1

∫ t

0
dλ2 f(λ1, λ2).

Generalising to n dimensions, we have∫ t

0
dλ1 · · ·

∫ λn−1

0
dλn f(λ1, . . . , λn) =

1

n!

∫ t

0
dλ1 · · ·

∫ t

0
dλn f(λ1, . . . , λn)

if f is invariant under any permutation of its arguments. Moreover, since each term in our
integrands only depends on one integration variable at a time, we can use∫ t

0
dλ1 · · ·

∫ t

0
dλn f1(λ1) · · · fn(λn) =

(∫ t

0
dλ1 f(λ1)

)
· · ·
(∫ t

0
dλn f(λn)

)
so that, in our case, we would have

g(t) =

( ∞∑
n=0

(−1)n

n!

(∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)n)
g0

= exp

(
−
∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)
g0.
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However, our integrands are Lie-algebra-valued (that is, matrix valued), and since the
factors therein need not commute, they are not invariant under permutations of the inde-
pendent variables. Hence, the above formula doesn’t work. Instead, we write

g(t) = P exp

(
−
∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)
g0,

where the path-ordered exponential P exp is defined to yield the correct expression for g(t).
Summarising, we have the following.

Proposition .112. For a principal G-bundle (P, π,M), where G is a matrix Lie group, the
horizontal lift of a curve γ : [0, 1] → U through pp ∈ preimπ({U}), where (U, x) is a chart
on M , is given in terms of a local section σ : U → P by the explicit expression

γ↑(λ) = (σ ◦ γ)(λ) C

(
P exp

(
−
∫ λ

0
dλ̃Γµ(γ(λ̃))γ̇µ(λ̃)

)
g0

)
.

Definition. Let γ↑p : [0, 1] → P be the horizontal lift through p ∈ preimπ({γ(0)}) of the
curve γ : [0, 1]→M . The parallel transport map along γ is the map

Tγ : preimπ({γ(0)})→ preimπ({γ(1)})
p 7→ γ↑p(1).

Loops and holonomy groups

Consider the case of loops, i.e. curves γ : [0, 1] → M for which γ(0) = γ(1). Fix some
p ∈ preimπ({γ(0)}). The condition that π ◦ γ↑p = γ then implies that γ↑p(0) and γ↑p(1)

belong to the same fibre. Hence, there exists a unique gγ ∈ G such that

γ↑p(1) = γ↑p(0) C gγ = p C gγ .

Definition. Let ω be a connection one-form on the principal G-bundle (P, π,M). Let
γ : [0, 1]→M be a loop with base-point a ∈M , i.e. γ(0) = γ(1) = a. The subgroup of G

Hola(ω) := {gγ | γ↑p(1) = p C gγ for some loop γ}

is called the holonomy group of ω on P at the base-point a.

G.3 Horizontal lifts to the associated bundle

Definition. Let (P, π,M) be a principal G-bundle and ω a connection one-form on P . Let
(PF , πF ,M) be an associated fibre bundle of P on whose typical fibre F the Lie group G
acts on the left by B. Let γ : [0, 1] → M be a curve on M and let γ↑p be its horizontal lift
to P through p ∈ preimπ({γ(0)}). Then the horizontal lift of γ to the associated bundle
PF through the point [p, f ] ∈ PF is the curve

γ

PF
↑
[p,f ] : [0, 1]→ PF

λ 7→ [γ↑p(λ), f ]
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For instance, we have the obvious parallel transport map.

Definition. The parallel transport map on the associated bundle is given by

TPFγ : preimπF ({γ(0)})→ preimπF ({γ(1)})

[p, f ] 7→ γ

PF
↑
[p,f ](1).

Remark .113. If F is a vector space and B : G×F → F is fibre-wise linear, i.e. for each fixed
g ∈ G, the map (g B −) : F → F is linear, then (PF , πF ,M) is called a vector bundle. The
basic idea of a covariant derivative is as follows. Let σ : U → PF be a local section of the
associated bundle. We would like to define the derivative of σ at the point m ∈ U ⊆M in
the direction X ∈ TmM . By definition, there exists a curve γ : (−ε, ε)→M with γ(0) = m

such that X = Xγ,m. Then for any 0 ≤ t < ε, the points γ
PF
↑
[σ(m),f ](t) and σ(γ(t)) lie in

the same fibre of PF . But since the fibres are vector spaces, we can write the differential
quotient

σ(γ(t))− γ
PF
↑
[σ(m),f ](t)

t
,

where the minus sign denotes the additive inverse in the vector space preimπF ({γ(t)}) and
hence define the derivative of σ at the point m in the direction X, or the derivative of σ
along γ at γ(0) = m, by

lim
t→0

σ(γ(t))− γ
PF
↑
[σ(m),f ](t)

t

(of course, this makes sense as soon as we have a topology on the fibres). We will soon
present a more abstract approach.
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H Curvature and torsion on principal bundles

In more elementary treatments of differential geometry or general relativity, curvature and
torsion are mentioned together as properties of a covariant derivative over the tangent or
the frame bundle. However, this is not the case. Torsion requires additional structure
beyond that induced by a connection.

H.1 Covariant exterior derivative and curvature

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. Let φ be
a k-form (i.e. an anti-symmetric, C∞(P )-multilinear map) with values in some module V .
Then then exterior covariant derivative of φ is

Dφ : Γ(TP )×(k+1) → V

(X1, . . . , Xk+1) 7→ dφ(hor(X1), . . . ,hor(Xk+1)).

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. The cur-
vature of the connection one-form ω is the Lie-algebra-valued 2-form on P

Ω: Γ(TP )× Γ(TP )→ TeG

defined by
Ω := Dω.

For calculation purposes, we would like to make this definition a bit more explicit.

Proposition .114. Let ω be a connection one-form and Ω its curvature. Then

Ω = dω + ω ω (?)

with the second term on the right hand side defined as

(ω ω)(X,Y ) := Jω(X), ω(Y )K

where X,Y ∈ Γ(TP ) and the double bracket denotes the Lie bracket on TeG.

Remark .115. If G is a matrix Lie group, and hence TeG is an algebra of matrices of the
same size as those of G, then we can write

Ωi
j = dωij + ωik ∧ ωkj .

Proof. Since Ω is C∞-bilinear, it suffices to consider the following three cases.

a) Suppose that X,Y ∈ Γ(TP ) are both vertical, that is, there exist A,B ∈ TeG such
that X = XA and Y = XB. Then the left hand side of our equation reads

Ω(XA, XB) := Dω(XA, XB)

= dω(hor(XA), hor(XB))

= dω(0, 0)

= 0
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while the right hand side is

dω(XA, XB) + (ω ω)(XA, XB) = XA(ω(XB))−XB(ω(XA))

− ω([XA, XB]) +
q
ω(XA), ω(XB)

y

= XA(B)−XB(A)

− ω(XJA,BK) + JA,BK

= − JA,BK + JA,BK

= 0.

Note that we have used the fact that the map

i : TeG→ Γ(TP )

A 7→XA

is a Lie algebra homomorphism, and hence

XJA,BK = i(JA,BK) = [i(A), i(B)] = [XA, XB],

where the single square brackets denote the Lie bracket on Γ(TP ).

b) Suppose that X,Y ∈ Γ(TP ) are both horizontal. Then we have

Ω(X,Y ) := Dω(X,Y ) = dω(hor(X), hor(Y )) = dω(X,Y )

and
(ω ω)(X,Y ) = Jω(X), ω(Y )K = J0, 0K = 0.

Hence the equation holds in this case.

c) W.l.o.g suppose that X ∈ Γ(TP ) is horizontal while Y = XA ∈ Γ(TP ) is vertical.
Then the left hand side is

Ω(X,XA) := Dω(X,XA) = dω(hor(X), hor(XA)) = dω(hor(X), 0) = 0.

while the right hand side gives

dω(X,XA) + (ω ω)(X,XA) = X(ω(XA))−XA(ω(X))

− ω([X,XA]) +
q
ω(X), ω(XA)

y

= X(A)−XA(0)

− ω(XJA,BK) + J0, AK

= −ω([X,XA])

= 0,

where the only non-trivial step, which is left as an exercise, is to show that if X is
horizontal and Y is vertical, then [X,Y ] is again horizontal.
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Definition. Let (P, π,M) be a principal G-bundle and let Ω be the curvature associated to
a connection one-form on P . Let σ ∈ Γ(TU) be a local section on M . Then, the two-form

Riem ≡ F := σ∗Ω ∈ Ω2(U)⊗ TeG

is called the Yang-Mills field strength.

Theorem .116 (First Bianchi identity). Let Ω be the curvature two-form associated to a
connection one-form ω on a principal bundle. Then

DΩ = 0.

H.2 Torsion

Definition. Let (P, π,M) be a principal G-bundle and let V be the representation space
of a linear (dimM)-dimensional representation of the Lie group G. A solder(ing) form on
P is a one-form θ ∈ Ω1(P )⊗ V such that

(i) ∀X ∈ Γ(TP ) : θ(ver(X)) = 0;

(ii) ∀ g ∈ G : g B ((C g)∗θ) = θ;

(iii) TM and PV are isomorphic as associated bundles.

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω and let
θ ∈ Ω1(P )⊗ V be a solder form on P . Then

Θ := Dθ ∈ Ω2(P )⊗ V

is the torsion of ω with respect to θ.

Theorem .117 (Second Bianchi identity). Let Θ be the torsion of a connection one-form
ω with respect to a solder form θ on a principal bundle. Then

DΘ = Ω θ.
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I Covariant derivatives

There is a neater approach to covariant differentiation, which will now discuss.

I.1 Equivalence of local sections and equivariant functions

Theorem .118. Let (P, π,M) be a principal G-bundle and (PF , πF ,M) be an associated
bundle. Let (U, x) be a chart on M . The local sections σ : U → PF are in bijective corre-
spondence with G-equivariant functions φ : preimπ(U) ⊆ P → F , where the G-equivariance
condition is

∀ g ∈ G : ∀ p ∈ preimπ(U) : φ(g C p) = g−1 B φ(p).

Proof. (a) Let φ preimπ(U)→ F be G-equivariant. Define

σφ : U → PF

m 7→ [p, φ(p)]

where p is any point in preimπ({m}). First, we should check that σφ is well-defined.
Let p, p̃ ∈ preimπ({m}). Then, there exists a unique g ∈ G such that p̃ = p C g.
Then, by the G-equivariance of φ, we have

[p̃, φ(p̃)] = [p C g, φ(p C g)] = [p C g, g−1 B φ(p)] = [p, φ(p)]

and hence, σφ is well-defined. Moreover, since for all g ∈ G

πF ([p, φ(p)]) = π(p) = π(p C g) = πF ([p C g, g−1 B φ(p)]),

we have πF ◦ σφ = idU and thus, σφ is a local section.

(b) Let σ : U → PF be a local section. Define

φσ : preimπ(U)→ F

p 7→ i−1
p (σ(π(p)))

where i−1
p is the inverse of the map

ip : F → preimπF ({π(p)}) ⊆ PF
f 7→ [p, f ].

Observe that, for all g ∈ G, we have

ip(f) := [p, f ] = [p C g, g−1 B f ] =: ipCg(g
−1 B f).

Let us now show that φσ is G-equivariant. We have

φσ(p C g) = i−1
pCg(σ(π(p C g)))

= i−1
pCg(σ(π(p)))

= i−1
pCg(ip(φσ(p)))

= i−1
pCg(ipCg(g

−1 B φσ(p)))

= g−1 B φσ(p),

which is what we wanted.
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(c) We now show that these constructions are the inverses of each other, i.e.

σφσ = σ, φσφ = φ.

Let m ∈ U . Then, we have

σφσ(m) = [p, φσ(p)]

= [p, i−1
p (σ(π(p)))]

= ip(i
−1
p (σ(π(p))))

= σ(π(p))

= σ(m)

and hence σφσ = σ. Now let p ∈ preimπ(U). Then, we have

φσφ(p) = i−1
p (σφ(π(p)))

= i−1
p ([p, φ(p)])

= i−1
p (ip(φ(p)))

= φ(p)

and hence, φσφ = φ.

I.2 Linear actions on associated vector fibre bundles

We now specialise to the case where F is a vector space, and hence we can require the left
action GB : F

∼−→ F to be linear.

Proposition .119. Let (P, π,M) be a principal G-bundle, and let (PF , πF ,M) be an asso-
ciated bundle, where G is a matrix Lie group, F is a vector space, and the left G-action on
F is linear. Let φ : P → F be G-equivariant. Then

φ(p C exp(At)) = exp(−At) B φ(p),

where p ∈ P and A ∈ TeG.

Corollary .120. With the same assumptions as above, let A ∈ TeG and let ω be a connec-
tion one-form on (P, π,M). Then

dφ(XA) + ω(XA) B φ = 0.

Proof. Since φ is G-equivariant, by applying the previous proposition, we have

φ(p C exp(At)) = exp(−At) B φ(p)

for any p ∈ P . Hence, differentiating with respect to t yields

(φ(p C exp(At)))′(0) = (exp(−At) B φ(p))′(0)

dpφ(XA) = −A B φ(p)

dpφ(XA) = −ω(XA) B φ(p)

for all p ∈ P and hence, the claim holds.
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I.3 Construction of the covariant derivative

With a covariant derivative, i.e. an “operator” ∇ defined previously, ee now have the fol-
lowing result.

Proposition .121. Let φ : P → F be G-equivariant and let X ∈ TpP . Then

Dφ(X) = dφ(X) + ω(X) B φ

Proof. (a) Suppose that X is vertical, that is, X = XA for some A ∈ TeG. Then,

Dφ(X) = dφ(hor(X)) = 0

and
dφ(XA) + ω(XA) B φ = 0

by the previous corollary.

(b) Suppose that X is horizontal. Then,

Dφ(X) = dφ(X)

and ω(X) = 0, so that we have

Dφ(X) = dφ(X) + ω(X) B φ.
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